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Summary: 
In the first part there are two demonstrations on how to 
obtain polynomials corresponding to the sum of powers 
of successive integers: the theorem "1A" for sums from 
1 to n and the theorem "1B" for sums from 0 to n-1. 
It is then shown that the matrix found can be expressed 
in the traditional form indicated by the so-called 
Faulhaber’s formula. 
 
In the second part, more generally, the result is 
extended to any arithmetic progression thus generalizing 
Faulhaber's formula relating to sums of powers of 
successive integers. 

 
Warning: 
For purely illustrative reasons, the vectors will often be represented with six 
components (m = 6) and the square matrices will be 6 rows and six columns. In the 
symbolism adopted, the number m of components is not specified because m can be 
any positive integer that one is free to set at will. 

http://www.pietrocola.eu/ricerchebernoulli/ricmat.htm


 

 
 
 
 
 
 
 
1.First part: The twin theorems 
1) Theorem "1A" 
On the polynomials corresponding to the sum of 
powers of successive integers from 1 to n 
 
 
 

Notation: 

 
 



 

 
 
We start from the following identity deriving from the 
development of the power of the binomial: 
 

 

Using the vectors defined at the beginning and taking 
into account the product rows by column, the previous 
one becomes: 

  



 

 
indicating the matrix with alternating signs, easily 
obtainable from Pascal's triangle as indicated at the 
beginning, we can summarize the identity by writing: 

 
adding member to member for the variables from 1 to n 
we obtain: 
 

 
 
By developing the sum to the first member, almost all 
the terms except the first and the last (telescopic effect) 
are simplified two by two and by collecting the common 
factor matrix of the second member, we obtain: 

 
Omitting the vector subtracted from null components 
and replacing the sum of vectors with the initially defined 
vector we obtain: 

 
finally to explicate the vector S multiply both members of 
the equation on the left by the inverse matrix of A 
marked (existing because inverse of a triangular matrix 



 

with determinant m!, non-zero product of the main 
diagonal): 
 

 
 
which solves the traditional problem of the sum of 
powers of successive integers 
 
 
 
 
 
 
 
 
 
 
 
 
1.1.1) Example in the case of seven components (m = 7): 
 



 

 
 
 
 
 
 
1.1.2) Example in the case of eleven components (m = 11): 
 

 
 
i.e. running the product row by column: 
 
 



 

 
 
These are the polynomials that were published in 
Jacob Bernoulli's book Ars Conjectandi in 1713 a 
few years after the author's death. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.2) "1B" theorem 
On polynomials corresponding to the sum of 
powers of successive integers from 0 to n-1 
 
 
Adopted notation (setting 0​0​=1): 



 

 
 

 
 

 
 
We start from the following identity between two vectors 
deriving from the development of the power of the 
binomial: 
 



 

  
 
 
Using the vectors defined at the beginning and taking 
into account the product rows by column, the previous 
one becomes: 
 

 
 
 
indicating with A the matrix obtainable from Pascal's 
triangle excluding the last element of each row, we can 
summarize the identity by writing: 

 
adding member to member for the variables from 0 to 
n-1 we obtain: 



 

 

 
 
By developing the sum to the first member, almost all 
the terms except the first and the last (telescopic effect) 
are simplified two by two and by collecting the factor 
matrix common to the second member, we obtain:

 
Omitting the vector subtracted from null components 
and replacing the sum of vectors with the initially defined 
vector we obtain: 

 
finally to explicate the vector S, both members of the 
equation on the left multiply by the inverse matrix of A 
(existing because A is a triangular ​mxm​ matrix with the 
product of the diagonal m!, not null): 
 

     ​(1) 
 
the problem of the sum of powers of successive integers 
is thus solved in general 
 



 

 
 
 
 
 
 
1.2.1) Example in the case of m = 7 components: 
 
 

 
 
 
 
 
calculating the inverse matrix: 
 



 

 
 
developing the product row by column: 
 
 

 
 
 

1.3) Proof of Faulhaber's formula 
We will show that the inverse matrix of A can be 
presented in the classic form. 
For example in the case of six components (m = 5) we 
will show that: 
 
 



 

 
 
 

We will show that the product row by column of the first by the second (and 

vice versa) give the neutral element of the product between matrices. The 

thesis will follow from the uniqueness of the inverse matrix. We proceed by 

induction. In the case m = 0 (1 row and a column) the result is B0 which is 

1. 

Since as m increases, the triangular matrices each time incorporate the 
previous results by completing the longest row with 0 and essentially 
adding only the last row, it will suffice to show that in the generic case m (m 
+ 1 rows and columns) the last row is made up of all 0 except 1 at the end. 

 
 



 

Multiplying the m-th row by the j-th column (starting from 0) and 
neglecting the null addenda due to the triangularity of the matrices, we 
obtain: 

 
By highlighting the factor independent of c h and expressing the binomial 
coefficients by means of factorial we have: 

 
changing the order of the factors and using the invariant property of the 
division we obtain: 

 
expressing in the form of a binomial coefficient and highlighting what 
does not depend on k: 

 

For the known properties of Bernoulli numbers, which can also be 
deduced from the product between the m-row of A and the first column 
of its inverse, the elements of the last row from j=0 to j=m-1, the 
summation is zero while for j=m the sum is reduced to a single addend 
equal to B​0​ = 1. Since 1 is also the factor outside the summation, the last 
row corresponds precisely to the last of the neutral element. 
 
Of course, by reversing the order of factors, for similar reasons, the 
same result is achieved: 
 



 

  
 
 
 
 
 
 
 
 
 
 
 
Second part: Further details 
 
2.1) The Abelian group of powers of T 
We will denote by T the triangular matrix corresponding 
to the Pascal triangle. 
 



 

 
For the development of the power of the binomial we 
have: 

 
 
which can be expressed as 

 
therefore multiplication by T increases the basis of the 
power vector by one unit. By repeating the operation the 
overall increase will be 2 units and therefore, for the 
associative property, it must be TT​V​(i)=T​2​V​(i)=​V​(i+2) 
 
 



 

 
 
 
More generally: 

 
equivalent to 

 
expressible as: 

 
therefore the multiplication by T​h​ increases the basis of 
the power vector of h. Therefore the set of powers of T 
with not only integer exponents (but also rational, real or 
complex) with the composition operation constitute an 
Abelian group isomorphic to that of the ordinary addition 
that they induce on the basis of the vectors V for which 



 

 

they multiply . Referring to the induced sums, it is found 
that 

 
Note that this way 

 
for example T​10​ can be calculated without having to 
repeat the product many times row by column. 
 
 
 
2.2) "1C" theorem 

On polynomials corresponding to the sum of powers of 
successive integers from  ​h​ a ​h+n-1  
 
 
We extend the notation already adopted in the two 
previous theorems: 
 



 

 
 
 
 
For our proof we can start from the theorem 1B which 
establishes: 

 
multiplying the two members on the left by T​h​, at the first 
member the multiplication is distributed to the addends 
V (i) which become V (h + i) and therefore 

 

 
 
2.2.1) Corollary 
note, as a corollary, that for h = 1 it turns out 
 
 

 



 

keeping in mind the theorem 1A it is proved that

 
  
 
 
 
 
 
2.2.2)  Example with h=-9 m=4 

 
Calculating ​T​-9​A​-1​: 
 

 
and in equivalent form: 



 

 
 
 
 
Example with h=e m=4  

 



 

 

 

 
Note that the quantities in parentheses in the 
polynomials in n are the Bernoulli polynomials calculated 
in e. 
 
 
 
 
2.3 Infinite Bernoulli sequences. 
We denote by ​B​(h) the array corresponding to the first 
column of T​h​A​-1​. Since the first column of A​-1​ is the 
vector ​B​ of the Bernoulli numbers, it results: 



 

 
 

 
 

 
 
where argument 0 corresponds to the ordinary Bernoulli 
numbers and argument 1 corresponds to its variant with 
only difference in the sign of the second element 
(B​1​=+½). The components of the vector ​B​(n) The 
components of the vector ​B​ (n) are the values of the 
Bernoulli polynomials of gradually increasing degree 
calculated in n. (for demonstrations and further 
information, refer  ​here​) 
 
 
 
 
 

https://drive.google.com/open?id=1i3bByhmZuanyMzYleBz3Fn8uAA2XtPCFvltcze1dBxw


 

2.4 From the T​h​A​-1​ matrix to the ordinary generalized 
Faulhaber formula. 
 
The T​h​A​-1 ​matrix can be ordered by expressing it 
  equivalently in one of the following two ways (for 
proofs, I refer ​here​): 
 

 
 

 
 
from the first, generalizing, we obtain: 

 
from the second: 

https://drive.google.com/open?id=1i3bByhmZuanyMzYleBz3Fn8uAA2XtPCFvltcze1dBxw


 

 
where B​k​(h) are the Bernoulli polynomials as a function 
of h corresponding to the first column of the matrix. 
 
B​k​(0)=B​k​ where B​k​(h) are the Bernoulli polynomials as a 
function of h corresponding to the first column of the 
matrix. 
 
B​k​(0) = B​k​ are the ordinary Bernoulli numbers, B​k​(1) = 
B​k​+​ are the Bernoulli numbers in the variant with B=+½ 
Particularized for j =1 the second of these equations is 
the formula called Faulhaber. For this formula often 
instead of using the sequence with B​1​ = + ½ on it uses 
the ordinary one and for this a factor (-1)​k​ is added with 
the aim of changing sign to Bernoulli numbers with odd 
index of which the only non-zero it is B​1​ = +½ which then 
becomes B​1​ = -½ 
 
 
 
 
 
2.5 Further generalization extended to any 
arithmetic progression. 
 



 

More generally we have: 

 
equivalent to 

 
expressible as: 

 
 as we see the multiplication by the T​h,r​ matrix 
transforms the base of the power vector linearly. So the 
set of these matrices forms a non-commutative group 
isomorphic to that of the composition of linear functions 
with a variable. 
 
We therefore have: 
 

 

 



 

 

 
 
case r = 1 identifies the commutative subgroup of the 
powers of T isomorphic to the ordinary sum already 
examined. 
 
 
 
  
2.6) Faulhaber's formula extended to any arithmetic 
progression 
As seen on the matrix T​h,r​ and for the rules of matrix 
algebra we have: 

 
and therefore by theorem 1B: 
 

(2) 

 
 
The same formula without matrices is equivalent to: 



 

 
 
Example in the case m = 6 
the matrices to be multiplied to obtain the polynomial 
coefficients are: 
 
 

 
 

 
 



 

 2.7)  Retouching the Faulhaber formula to extend it 
to any arithmetic progression 
 
Since T​h,r​=T​0,r​T​h/r,1​ we can write the (1) as: 

 
from witch: 

 

 
 
this result, without matrices, can be expressed as: 
 

(3) 
 



 

formula that extends Faulhaber's formula to any 
arithmetic progression which, in the particular case ​h=0 
e r=1, ​is: 
 
 
 
 

 
the most common is the particular case h=1 r=1: 

 
as it is known the Bernoulli polynomials calculated in 1 
almost identical to the same calculated in 0, which are 
the Bernoulli numbers, often the previous one is written: 
 
  

 
where it is: 

 
variant of Bernoulli numbers with the only difference: 



 

 
 
2.8 Umbral calculus and translational properties 
With the notation of the umbral calculation, assimilating 
the index of the polynomial to an exponent, the previous 
one (3) can be written: 

 
for the translational property of the polynomials of 
Bernoulli (and more generally of those of Appell) it 
results: 

 
so: 

 
 
Note 
After my discovery, looking on the net, I found that, a 
few years earlier, Bazso and Mezo had reached my 
same result: 



 

 
 
 


