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22 THE MATHEMATICAL GAZETTE

note that, by using pictorial ideas, it is possible to show that the blancmange
function is nowhere differentiable, a fact that is considered ‘too difficult’ to
explain in most undergraduate mathematics courses. What is more
important is that these practical ideas translate into a correct formal
proof, now invested with geometric insight -sadly lacking in so much
formal mathematics. ‘

“Intuition” is not a low-level phenomenon to be excluded from higher
mathematics, it is a highly personal mental activity produced by experience.
If we give the right experiences and enhance intuition then it can result in a
much more profound understanding.

DAVID TALL

Mathematics Education Research Centre, University of Warwick,
Coventry CV4 7AL

Sums of powers of integers: a little of the history
A. W. F. EDWARDS

The lack of any obvious pattern amongst the Bernoulli numbers (1,-41,0,
~3900,25,0,—4,...) is one of the shocks of analysis which subsequent
familiarity with the many beautiful and simple means of deriving them does
not altogether assuage. Historically, they first arose in connection with the
sums of the rth powers of the first » integers

L]
2ir=1"+2"+3+.. 41 (1
i=1

which it is convenient to write as > »". The Greeks, Hindus, and Arabs
all had rules amounting to -

2n =jnn+ D =4n? + in
2t =gn(n+ D2n+ 1) =4n’ + 4 + In (2)
21 =[dn(n + D2 =in' + in® + In?
whilst a fifteenth-century Arab rule for the fourth powers was equivalent to
2nt =kn(n+ D2n + DGR+ 3n— 1)
=5 + dn* + n* — 4n, (3)

there being no »? term in the second form.
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SUMS OF POWERS OF INTEGERS ' 23

With these four formulae to go on (prefaced if necessary by the trivial
21 = n), mathematicians in the first half of the seventeenth century
attempted to find general forms for >, r=5, 6, 7.... In 1636 Fermat
discovered a recurrence relation, based on the figurate numbers, which gave
2 in terms of > "L, 2 n72, ..., but the successive algebraic substitutions
soon become intractable, whilst in 1654 Pascal derived a more practicable
formula from the binomial expansion as a sequel to his investigations on
the Arithmetical Triangle. It still gives > n" in terms of the lower-order
sums, but this time the coefficients are readily computed, as we show below.
But both these famous French authors had overlooked the results of the
weaver of Ulm, Johann Faulhaber, who by 1631 had completed the
publication of all the sums up to 2 n!". Nor did he find them by brute
force alone, even though by 1615 he was aware of the result in the figurate
numbers that makes Fermat’s method possible; rather, he generalised the
first of the forms given above, using his discovery that

># (rodd) = a polynomial in n(n + 1) } @
21" (reven) = (2n + 1} x (a polynomial in n(zn + 1))

Having obtained the rules by which these polynomials could .be found
for successive r’s, in each case he expanded his result into the second of
the forms given above in (2) and (3}, that is, as a polynomial in # of degree
r + 1. It is a little surprising that the French authors were ignorant of these
results because the fame of Fauthaber was such that Descartes had spent
some time with him in Ulm in 1620, and he was a prolific author.

Then, in his posthumous Ars corjectandi of 1713, James Bernouili,
mentioning Fauthaber, gave the second forms up to r=10 in a table
(Table 1) from which it is easy to see the pattern of the coefficients of
the powers of n, for each coefficient derives from the one above it by a
simple rule. It is orly the numbers at the heads of the columns which are
mysterious, and Bernoulli saw (as Faulhaber had done) that they could
easily be determined since the coefficients in each row must sum to 1
(putting. » =.1, 21"=1). Bernoulli actually made a mistake in the

n =i +in

Int =i +in? +in

nt o=qn' i +in?

2t =t +dnt i’ —gn

2n' =inf  +in® + &nt —4n?

Snt =in'  +dn® +dn’ —i0 +4n

2nt =int i+ It — knt + hn?

T S R R AR SCOME i S

n® =4 +4n° +in® —gnd +int ~im?

I =dnt +4n® i —n' o+ nt i + &n

TABLE 1. James Bernoulli’s Summae Potestatum (corrected)
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24 THE MATHEMATICAL GAZETTE

coefficient of n? in 2 »° which he gave as —1/12 and which has been
faithfully repeated by commentators (though not, of course, by the
constructors of new tables) ever since. He did not attempt to prove the
general form, and made no use of the relations (4) above.

~Euler, in turn, tackled the problem of summing the powers and in 1755
published a proof of the Bernoulli forms based on the calculus of finite
differences, christening the coefficients of » taken positively for r = 2.4.6 ..
the Bernoulli numbers in honour of James. Poor Faulhaber might
reasonably have felt a little aggrieved at this, since he had not only
published the ‘Bernoulli’ numbers up to r= 16 a hundred and twenty-four
years previously, but he had given a method, albeit needlessly laborious,
by which further numbers could be computed. There is little we can do to
repair the nomenclature now, but we could call (4) Faulhaber polynomials.
They were not rediscovered until Jacobi applled the Euler-Maclaurin
summation formula to the sums of the powers in 1834; since that formula
came out of a knowledge of the sums of the powers in the first place. and
Euler mentioned Bernoulli who mentioned Faulhaber, the trail of two
centuries would not have been too difficuit to follow. Even the usually
well-informed J. W. L. Glaisher, writing about the sums of the powers in
1899, said he knew of nothing on the subject beside Jacobi’s paper and
a brief and inconsequential note by Cayley in 1858. Since then the
Faulhaber forms have been rediscovered on more than one occasion. but
never, to my knowledge, correctly attributed.

So much for history; I now show how, with elementary matrix- theory
applied to Pascal’s method, the sums of the powers may be derived with
consummate ease, and in particular how one of the standard algorithms
for calculating the Bernoulli numbers may be made self-evident. The
name ‘Pascal matrices’ may be given to a family of infinite triangular
matrices whose elements are- derived, more-or-less directly, from the
coefficients of Pascal’s Arithmetical Triangle. Pascal, of course, knew
nothing of matrices, nor even of determinants, but the peculiar appropriate-
ness of attaching his name to this particular kind of matrix will become
clear in due course.

The first Pascal matrix can only be:

1 0 00 O
1 1 0 0 0
1 2100
P={1 3 3 10
1 4 6 4 1
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SUMS OF POWERS OF INTEGERS 25

and our first theorem is:

Theorem I
1 0 6 0 \
-1 1 6 0 8
t -2 1 0 0 }
Pi=j-1 3 -3 1 © |
1 -4 6 —4 1

Proof A hint will be sufficient: consider the expansions of (x + 1) and
(x— 1)

Qur second theorem is simply the matrix formulation of the identities
found by Euler and Vandermonde in the 1770s, which may themselves
be thought of as generalisations of the addition relation for finding binomial
coefficients:

Theorem 2
1 1 1 1 1
I 2 3 4 5
1 3 6 10 15
PP=1 4 10 20 35 . .
11 § 15 35 70 . . "

|

Proof Again, a hint will suffice: just as the identity (x + Dt =
(x + 1)(x + 1)" establishes the addition relation, identities of the form
(x+ 1Y+ =(x+ 1)’(x + 1), 5 =2, 3, 4, ... establish its generalizations.

In 1654 Pascal gave what has become the standard school method for
summing the powers:

(n+1Yy=(@m+ I)+r2n+'(;)2n2+(;')2n3+ e

+(r-)zm—a (5)

r—1
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26 THE MATHEMATICAL GAZETTE

Writing it successively for =1, 2, 3, ... and applying matrix notation
to the resultant simultaneous linear equations we find:

m+DY (1 0 0 00 . Nfn+l

(m+1? |1 2 0 00 A 3n
(m+17°| {1 3 3 00 Y
(n+ D=1 4 6 4 0 on

1 5 10 10 § >nt

(n+ 1)

The matrix may be called the second Pascal matrix, Q, derived from

the first by the loss of its main diagonal. Inverting Q and replacing n by
n— 1 we have

Theorem 3
{ n Y{1 o o o 0. \ln
sa—n| |4 1+ 0o o o n’-
dh—1? |+ -+ 4 0 O n
m—1=l0 }+ — L1 0O nt
2m—1 |- 0 + — 4 n’

This theorem gives the sums of the powers of the integers, in each case
up to the term (n — 1Y, as polynomials in n. To obtain Bernoulli’s Summae
Potestatum exactly as given in our Table 1 it is only necessary to add »”
to each sum, thereby changing all the coefﬁcients in the diagonal below the
main diagonal of the matrix Q—! from — to +4.

In his recent Mathematical Gazette article (December 1980) S. H. Scott
arrived at Q~!, but without realising its precise significance. He had
.obtained (5) by Pascal’s method, but instead of carrying straight on as
we have done he found ‘the repeated use of this method ... formidable’
and diverted down a rougher road. His second method for computing the
coefficients is, incidentally, the one actuvally advocated by James Bernoulli
in Ars conjectandi (1713).
- How delighted Pascal would have been to learn that his own method
for finding the sums of the powers could be completed by inverting a matrix
of coefficients from the Arithmetical Triangle! (Hence the appropriateness
of attaching his name to such matrices.)
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SUMS OF POWERS OF INTEGERS 27

The first column of Q! gives the Bernoulli numbers B, B,, B,, ... as
they are often nowadays defined, even though B, is then —4 rather than
the +3 of Bernoulli’s table. When Euler first christened the Bernoulli
numbers he avoided this problem by starting with B, = 1/6.

Theorem 4

i o/
B,=1 Z(';C)Bk=3.i (22

k=0

Proof An immediate consequence of the B’s being the first column of

b

This weli-known relation is sometimes described 'symbolically in the
form ‘B;= (B + 1Y, where the exponents are to be degraded to subscripts
after the binomial has been expanded’. Exactly the same principle can
be used to find the elements in any other column of @', starting always
with the number in the main diagonal as the ‘seed’.

If one is upset by the fact that B, = —4 in this approach, matters may
be set right by deriving:

Theorem 5 t
() [ 1 c. 0 0 . }-lfn\ ‘(
dnt |-t 2 0 0 0 . nt ;1
Sl |1 =3 3 0 0 . n \
Swil={-1 4 —6 4 O . nt 1
Sy | 1 —5 10 —10 5 . n’ 2
O R At

Proof Recall the standard school proof of Pascal’s formula (5), which
relies on the expansion of (x + 1) — x”; repeat the argumenton (x — 1)'—x",
and then continue in a way analogous to the derivation of Theorem 3.

Theorem S5 gives the coefficients in the expressions for the sums of the
powers exactly as they occur in Bernoulli's table; moreoever, the
corresponding theorem to Theorem 4 leads to the modified Bernoulli
numbers B} where B =B, j>2, By=B,, B} =3=B,+ 1, constructed
symbolically from ‘B} = (B' — 1}, j>2, B} =1, where the exponents are
to be degraded to subscripts after the binomial has been expanded.’
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28 THE MATHEMATICAL GAZETTE

All the properties of the Bernoulli numbers can, of course, be derived
from these matrix formulations, in particular their known expressions in
terms of determinants, given originally by F. Siacci in 1865 and then by
J. Hammond in 1875 and E. Lucas in 1876.

A.W. F. EDWARDS
Gonville and Caius College, Cambridge

Parallels
P. J. GIBLIN

Given a straight line L in the plane, how can we find all lines parallel to L?
Here is one way: at each point P of L draw a straight line perpendicular
to L. Now choose a number 4 and measure a distance d down these lines,
always in the same direction. Joining up the points P’ so obtained gives
the parallel to L at distance d. '

This definition of parallel works for any curve C, provided C has a
tangent line at each point. For we can measure a distance 4 along the
“normal” to C at each point P. The normal is the line through P perpen-
dicular to the tangent at P. Joining up the points P’ gives the parallel

P
. L
d
: Parallel
P'
FIGURE 1. FIGURE 2.

to C at distance d. (Measuring d the other side of C may now give a
completely different looking parallel.) It is reasonably clear that the parallel
to a circle, centre 4, radius r, at distance 4, will be another circle centre 4.
The radius will be r + d or r—d or d— r: can you see why it might be
any of these?

Given C and a reasonably accurate way of drawing normals it is possible
to get a good idea of what the parallels to C look like. An alternative
method, given C, is to draw lots of circles, centred on.C, of radius d.
These will all touch the two parallels at distance d on the two sides of C.
The parallels appear as the “envelope” of the circles. In Fig. 3, C is the
curve y*=x-—x? (for 0<x<1) and d=0-2. By tracing C and using
different values of d you can obtain other parallels.

Parallels are physically interesting because we can imagine light, or other
radiation, propagated from each point of C along the normals to C: the
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