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F1G. 5. An optimal function corresponding to m = ’ﬂ' >4 and t € (1/yYm,1/2).

aRK. The idea of using asymmetric bounds for this type of problem apparently originated
Hérmander [4].
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A QUICK ROUTE TO SUMS OF POWERS
b A.W.F. EDWARDS
i Gonville and Caius College, Cambridge, England

i

i:s a remarkable fact that the polynomial for the sum of the rth powers of the integers

n
Y v =an+amn+ - +a, 0"

v=1

Ebe expressed in terms of the first two sums

I W F. Edwards: 1 am Reader in Mathematical Biology in the University of Cambridge. An interest in the
gauons of statistics (manifest in my 1972 book Likelihood, Cambridge University Press) has led to historical
g_‘:hes in the origins of combinatorial theory, culminating in a book Pascal’s Arithmetical Triangle (Griffin,
[;;rwycomhe; in press), and thence to Bernoulli’s Ars conjectandi and the work of Faulhaber,

Emy spare time [ am President of the C.U. Gliding Club and holder of the international Gold badge for

E&&l{as is my wife also). I have contributed to the theory of cross-country soaring, which is a fascinating exercise
?;Phﬁd mathematics,

i
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):I:u=n(n+1)/2

v=1

and

n
Y vt =n(n+1)(2n+ 1) /6,
v=1
a result ultimately traceable to the symmetry of the Bernoulli polynomials. The first exam, 1
of course, the familiar yet striking relation PIcY
n n 2
$o-{To):
v=1 v=1
the general result was proved by Jacobi (1834).

But perhaps even more striking than the result itself is the fact that it was known over
centuries before Jacobi’s time, by the forgotten German mathematician Johann Faulhabe
whose Academia algebrae (Augspurg, 1631) I found it in 1981 whilst pursuing a lead from J
Bernoulli’s Ars conjectandi (Basel, 1713). At the point where he introduces the POlyDOmi |
and gives a table of the coefficients (including, of course, the Bernoulli numbers, so-call
de Moivre), Bernoulli mentions the name of Faulhaber. It so happened that the one wo;
Faulhaber readily accessible to me was the copy of Academia algebrae belonging to Camb
University, oddly enough once the property of Jacobi (though whether he acquired it befo
after 1834 we cannot say).

Writing 3, v as n” for simplicity, we find that Faulhaber’s polynomials are

Sar(reven) = £t - (1 + B+ y(Tn) + o0 ba(T0) )
and
@ Sw(rods3)=(Ln)-(a+alnta(Tn) +: o tapa(Xn

where of course the coefficients b; and ¢; differ with each r.

Faulhaber gave an algorithm for obtaining the coefficients ¢, from the b, for the prel
value of 7, and a method for obtaining the b, themselves. I have christened the fort
“Faulhaber polynomials’ (Edwards, 1982), and Schneider (1983) has given an account
methods. The purpose of the present paper is to exhibit the matrix forms for the Fai
polynomials in a way analogous to the matrix forms for the polynomials (1) (Edwards,
Apart from its intrinsic elegance this approach allows Faulhaber’s algorithm for obtaining
from the b; to be easily understood. :

Consider the expansion of [x(x + 1)]" — [x(x — 1)]", and apply to it Pascal’s m€
writing the identity successively for x = 1,2,3,... n and summing, as suggested by Tits
We obtain (in the = notation introduced above) i

(3) [n(n+1)]’=2[,.§:nzr—1 +(;)anr—3 % (g)ZHZr—S " ],

which may be written in matrix form with rows for r = 2,3,4,...,

[n(n+1)]2 2 Yon?

)(r—fi)/?

[n(n+ D] 1 3 0 Y
(4) [n(n+D]*| =20 4 4 aLn
[n(n+ 1)) 01 10 5 Y. o
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which each row of the matrix is the corresponding row of Pascal’s triangle with every other
ocfficient omitted. Writing u = n(n + 1) and solving (4) for the sums of the odd powers, we

have
Yon? 2 “Hq?
yol i 0 | |w
(@) La’| T g|0 4 4
' 01 10 5 w’

ra

hich is the complete solution for the ‘odd’ Faulhaber polynomials since u = 2X n. In particular,
2 is a factor of every polynomial, this proving the form given in (2).
Call the matrix of (4) F = {f;,}, then

) f'1=(2(:’h;')1+1)’

r zero for all values of i and j which do not define binomial coefficients. The matrix

1/2
-1/6  1/3 0
F'=1 106 -1/3 1/4

-3/10  3/5 -1/2 1/5

or the factor 2 in u = 2Xn. :
. Tits also treated the even polynomials, applying Pascal’s method to the expansion of
Fx(x + 1)t — x"*Y(x — 1)" and using (3) to remove the odd powers. The result, written in

Y n? 3 u

; Y ont 1 1 5 0 u?
8) En6 = 5(211 + 1) . 0 5 7 u3
0 1 14 9 ut

Yn®
Call the matrix of (8) G = {g,, }, then

) 5= () oy 1)

undefined binomial coefficients again being replaced by zeros. It will be seen that
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-1/15 1/5 0
(11) Gl'=l 1 —1p7 1/7
-1/15 /5 -2/9 1/9

thus leads to all the coefficients of the even Faulhaber polynomials. L
Faulhaber knew, in essence, how to obtain F- from G~'. We may discover his algorithpy, f

follows. ;
Take F and divide the elements of each column by the diagonal element in that column st
thus write
2 2 1
1 3 0 3 0 1/3 1 0
(12) F=|9 4 g4 - 4 0 1 1
01 10 5 0 5 0 1/5 2 1

Now take G and divide the elements of each row by the diagonal element in that row and th

write
3 1 3
L 5 0 1/3 1 0 5 0
(13) =10 5 7 =l o 1 1 7
01 14 9 0 1/5 2 1 0 9

Comparing (12) and (13) wé see that the deriv

ed matrices are identical, an identity which, when
analysed using (6) and (9),

rests on a simple (and uninteresting) identity involving binomial_

coefficients.
Now write
2
3 0
X= 4
0 5
and
3
5 0
Y= 7
0 9
and we have X™'F = GY ! or, inverting,
F !X =vYG!
and thus
(14) F!=YG!X-L

It is easily seen that premultiplication of G- by Y and postmultiplication by X~! amounts t0
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multiplying the rows of G™! by 3,5,7,9,..., respectively, and dividing the columns by
2,3,4,5,..., respectively. Thus to obtain the jth coefficient in the ith row of F-! we take the
corresponding coefficient in G™', multiply by (2i + 1) and divide by (j + 1).

For example, when i = 4 we multiply the four coefficients in the fourth row of G- it

1 1 21
S 15's! Tgr s
o
9 9 9 9
2‘3‘,4,5’
" to obtain the fourth row of F~!,
3 3 11
L

Thus the polynomial
leads to

Faulhaber’s actual algorithm is different because we have worked with u = 2 rather than
En, but the difference is, of course, trivial.
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Added in proof: Of related interest is B. L. Burrows and R. F. Talbot, Sums of powers of integers, this MONTHLY, 91
- (1984) 394-403.

170. MISCELLANEA

- There is now, and there always will be room in the world for good mathematicians of every

grade of logical precision. It is almost equally important that the small band whose chief interest
lies in accuracy and rigor should not make the mistake of despising the broader though less
Accurate work of the great mass of their colleagues, as that the latter should not attempt to shake
themselves wholly free from the restraint the former would put upon them.

—Maxime Bbcher, Bull. Amer. Math. Soc., 10 (1904) 135.



