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Abstract

Starting from a few elements, binomial matrices and vectors, without
resorting to the traditional expansion in power series, polynomials and
Bernoulli numbers are defined, proving various theorems on them. Along
the way, the classic problem of the sum of powers of successive integers,
which is generalized to sums of powers having any arithmetic progression
as a basis, is also solved, in various ways, . The itinerary develops through
numerous propositions rigorously linked on the classic model of Euclid’s
Elements. Numerous examples and hypertext references have the didactic
purpose of making reading easier.
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1 Introduction

1.1 Warnings
These will be binomial matrices, i.e. matrices of order m, potentially infinite, which
follow in whole or in part the development of the power of the binomial and therefore
Pascal’s triangle. The integer indices r and c will be used to indicate the number of
rows and columns of the various matrices taken into consideration. The variability of
these from 1 to m will often be implied. In order not to burden the notation, we have
also chosen not to make explicit the order m of the matrices in the formulas, which
can be, from time to time, fixed as desired in the examples. Any vectors present will
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be considered as matrices with a single column and m rows.
We will set 00 = 1, this will allow in several cases to generalize without making excep-
tions when the non-negative integer exponent vanishes. Example:

∑n−1
k=0 k0 = n

2 Definitions

2.1 Three diagonal matrices: N, J, U
Definition 1 (N) Matrice diagonale dei numeri naturali

[N ]r,c = r se c = r, altrimenti 0

E’ applicata in: E:1,6; D:9; P:6,7,15,16,17,27,29,30,31,51,53,54,55,56,57,
60,61.

Definition 2 (UJ, gruppo matrici unità e sua radice)

[U ]r,c = 1 se c = r, altrimenti 0

[J ]r,c = (−1)r−1 se c = r, altrimenti 0

E’ applicata in: E:1 P:8,21,22,23,24,25,29,30,34,38,51,53,54,55,56,59.

Notes U J N are diagonal matrices ie square matrices of order m with all null elements
except those of the main diagonal. The product rows by columns between matrices
of this type boils down to the multiplication of elements that is, corresponding to
the Hadamard product (XY = X ◦ Y ). These matrices form a multiplicative group.
The inverse matrix of a diagonal matrix therefore has the elements of the diagonal
corresponding to each other. U and J they are inverses of themselves.

2.2 Three costant Pascal matrices: T, A e Z
By the term binomial matrix we mean matrices of order m constructed using the
binomial coefficients following Pascal’s triangle

Definition 3 (T matrix) Full Pascal triangle

[T ]r,c =

(
r − 1

c− 1

)
if c ≤ r, otherwise 0

It is applied in: E:3; D:15; P:1,2,3,6,7,8,16,18,19,28,29,30,31,40,54,57.

Definition 4 ( A matrix) Pascal triangle without last element of row

[A]r,c =

(
r

c− 1

)
if c ≤ r, otherwise 0

It is applied in: E:2; D:7,9; P:15,16,17,28,32,34,35,36,37,38,40,41,43.

Definition 5 (Z matrix ) Pascal triangle without first element of row

[Z]r,c =

(
r

c

)
if c ≤ r, otherwise 0

It is applied in: E:3; P:6,7,8,27,28,30,53,55,56.
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2.3 Two variable binomial matrices: T(h,d), G(h,d)
Definition 6 T(h,d) Non Abelian group of binomial matrices of order m

[T (h, d)]r,c =

(
r − 1

c− 1

)
hr−cdc−1 if c ≤ r, otherwise 0 h, d ∈ C

Special cases
T (h, 1) = Th group of the powers of T (P:5)
T (1, 1) = T 1 = T full Pascal triangle
T (0, d) = Ṽ (d) group of diagonal Vandermonde matrices (P:4)
T (0,−1) = Ṽ (−1) = J unit root
T (0, 1) = T 0 = Ṽ (1) = U unit
It is applied in: E:5,9; D:7; P:4,5,9,11,12,13,14.

Definition 7 G(h,d) matrices

G(h, d) = T (h, d)A−1

Special cases:
G(h, 1) = ThA−1

G(0, 1) = G0 = A−1

G(1, 1) = G1 = TA−1

It applies: D:4,6 is applied in: D:10; P:29,30,31,40,41,42,43,44,46,47,48,
53,54.

2.4 Three variable vectors: V(x), B(x), S(h,d,x)
Definition 8 Vandermonde vector Let V⃗ (j) be the vectors with m components
defined as follow:

[V⃗ (x)]r = Vr−1 = xr−1 with r = 1, 2, 3, ...m r,m ∈ N+ x ∈ C
It is applied in: E:6; D:9,10; P:3,4,6,9,13,15,19,20,29,30,31,32,33,34,35,36,
37,38,39,45,46,53,54,55,56,57.

Definition 9 (Bernoulli vector)

B⃗(x) = A−1NV⃗ (x) x ∈ C

Special cases:
B⃗ = B⃗(0)
B⃗+ = B⃗(1)
It applies: D:1,4,8; Is applied in: E:7; P:15,17,18,19,16,29,30,31,47, 49,50,
51,52,53,54,55,56,57,58,59,60,61,62.

Note In P:15 we will show that the components Bk(x) of the vector thus defined are
the Bernoulli polynomials and that the sequences Bk = Bk(0) and B+

k = Bk(1) are
the two variants of the Bernoulli numbers

Definition 10 S(h,d,x) sum powers vector with m components: x, h, d ∈ C

S⃗(h, d, x) = G(h, d)xV⃗ (x)

Special cases:
S⃗(h, 1, x) = G(h, 1)xV⃗ (x) = ThA−1xV⃗ (x)
S⃗(0, 1, x) = S⃗(x) = G(0, 1)xV⃗ (x) = G0xV⃗ (x) = A−1xV⃗ (x)
S⃗(1, 1, x) = S⃗+(x) = G(1, 1)xV⃗ (x) = G1xV⃗ (x) = TA−1xV⃗ (x)
It applies: D:7,8; is applied in: P:33,37,39,44,45,46,53,54,55,56,57.

4



2.5 Three operators: semi-opposite, tilde and hat
Definition 11 (Semi-opposite operator) From matrices to similar matrices with
alternating signs This operator trasforms a matrix X in another similar one X, called
semi-opposite of X, with elements [X]r,c opposite in the position where r + c id odd,
i.e. sach that:

[X]r,c = (−1)r+c[X]r,c

It is applied in: E:2,4; P:21,22,23,24,25,26,36,37,38,40,41,42,48,59.

Note It is easy to see, Si constata facilmente, as better explained in P:21 and E:4,
that

X = JXJ

Definition 12 (Tilde operator) From vector to diagonal matrices

Withy reference to a vector X⃗ with components X0, X1, ...Xm−1 gives a diagonal
matrix defined as follows:

[X̃]r,c = Xr if c = r otherwise 0

It applies: D:8; is applied in: E:1 P:3,4,7,8,11,13,14,17,21,24,25,27, 29,30,
31,34,38,39,53,54,55,56,57,60.

Recall that the Hadamard product (symbol ◦) between matrices of the same order is
a matrix with elements equal to the product of the corresponding elements.

Definition 13 (Hat operator) From vectors to Toeplitz triangular matrices With
reference to a vector X⃗ with components X0, X1, ...Xm−1 it gives a triangular Toeplitz
matrix defined as follows:

[X̂]r,c = Xr−c if c ≤ r otherwise 0

It is applied in: E:8 D:15,16 P:1,2,3,5,6,7,16,18,19,20,27,29,30,
53,54,55,56,57,58,60,61.

2.6 T-composed matrices
Definition 14 (T-composed matrices) We will call T -composed matrices having
structure T ◦ X̂
Recall that the Hadamard product (symbol ◦) between matrices of the same order is
a matrix with elements equal to the product of the corresponding elements. Similarly
matrices of the type Z ◦ X̂ will be called Z-composed

It applies: D:3,5,13; is applied in: E:9 P:1,2,3,5,7,16,17,20,27,28,29,30,
31,53,54,55,56,57,60,61.

2.7 links to three other definitions
Further definitions:

D:15 Powers of T

D:16 Powers of Z

D:17 Binomial matrix for Bernoulli numbers
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2.8 Collection of examples on the given definitions
Example 1 (Diagonal matrices) m=6

N =


1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6

 N−1 =


1 0 0 0 0 0
0 1

2
0 0 0 0

0 0 1
3

0 0 0
0 0 0 1

4
0 0

0 0 0 0 1
5

0
0 0 0 0 0 1

6

 N


1
x
x2

x3

x4

x5

 =


1
2x
3x2

4x3

5x4

6x5


=

Ṽ (2) =


1 0 0 0 0 0
0 2 0 0 0 0
0 0 4 0 0 0
0 0 0 8 0 0
0 0 0 0 16 0
0 0 0 0 0 32

 U =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 J =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


It applies: D: 1,2,8,12.

Example 2 (Example of semi-opposite matrices ) m=6

A =


1 0 0 0 0 0
1 2 0 0 0 0
1 3 3 0 0 0
1 4 6 4 0 0
1 5 10 10 5 0
1 6 15 20 15 6

 A =


1 0 0 0 0 0
−1 2 0 0 0 0
1 −3 3 0 0 0
−1 4 −6 4 0 0
1 −5 10 −10 5 0
−1 6 −15 20 −15 6


It applies: D: 4,11

Example 3 (T, Z matrices) with m=5

T =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 T =


1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

 Z =


1 0 0 0 0
2 1 0 0 0
3 3 1 0 0
4 6 4 1 0
5 10 10 5 1


It applies: D: 3,5.

Example 4 (T, J matrices) with m=4

JT =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 =


1 0 0 0
−1 −1 0 0
1 2 1 0
−1 −3 −3 −1



TJ =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 =


1 0 0 0
1 −1 0 0
1 −2 1 0
1 −3 3 −1



JTJ =


1 0 0 0
−1 −1 0 0
1 2 1 0
−1 −3 −3 −1



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 =


1 0 0 0
−1 1 0 0
1 −2 1 0
−1 3 −3 1


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Note that the multiplication of J on the left causes the rows to change sign alternately
while on the right the columns alternately
It applies: D: 3,11 P:21;

Example 5 (Binomial matrices) m=5

T (h, d) =


1 0 0 0 0
h d 0 0 0
h2 2hd d2 0 0
h3 3h2d 3hd2 d3 0
h4 4h3d 6h2d2 4hd3 d4

 T (1, 1) = T =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1



T (h, 1) = Th =


1 0 0 0 0
h 1 0 0 0
h2 2h 1 0 0
h3 3h2 3h 1 0
h4 4h3 6h2 4h 1

 T (0, d) = Ṽ (d) =


1 0 0 0 0
0 d 0 0 0
0 0 d2 0 0
0 0 0 d3 0
0 0 0 0 d4


It applies: D:6 It is applied n: E:12,14

Example 6 (Vandermonde vectors) with m=6 components

V⃗ (j) =


1
j
j2

j3

j4

j5

 =


V0

V1

V2

V3

V4

V5

 jV⃗ (j) =


j
j2

j3

j4

j5

j6

 V⃗ (0) =


1
0
0
0
0
0



d

dx
xV⃗ (x) =

d

dx


x
x2

x3

x4

x5

x6

 =


1
2x
3x2

4x3

5x4

6x5

 = NV⃗ (x) =


1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6




1
x
x2

x3

x4

x5


It applies: D: 1,8; is applied in: P: 60.

Example 7 (Bernoulli vectors) m=6 components

B⃗(x) =


B0(x)
B1(x)
B2(x)
B3(x)
B4(x)
B5(x)

 =


1 0 0 0 0 0
1 2 0 0 0 0
1 3 3 0 0 0
1 4 6 4 0 0
1 5 10 10 5 0
1 6 15 20 15 6



−1 
1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6




1
x
x2

x3

x4

x5

 =

=


1 0 0 0 0 0
− 1

2
1
2

0 0 0 0
1
6

− 1
2

1
3

0 0 0
0 1

4
− 1

2
1
4

0 0
− 1

30
0 1

3
− 1

2
1
5

0
0 − 1

12
0 5

12
− 1

2
1
6




1
2x
3x2

4x3

5x4

6x5

 =


1

− 1
2
+ x

1
6
− x+ x2

− 3
2
+ x2 + x3

− 1
30

+ x2 − 2x3 + x4

− 1
6
x+ 5

3
x3 − 5

2
x4 + x5


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or for the associative property

=


1 0 0 0 0 0
− 1

2
1 0 0 0 0

1
6

−1 1 0 0 0
0 1

2
− 3

2
1 0 0

− 1
30

0 1 −2 1 0
0 − 1

6
0 5

3
− 5

2
1




1
x
x2

x3

x4

x5

 =


1

− 1
2
+ x

1
6
− x+ x2

− 1
2
x− 3

2
x2 + x3

− 1
30

+ x2 − 2x3 + x4

− 1
6
x+ 5

3
x3 − 5

2
x4 + x5



B⃗(0) = B⃗ =


B0

B1

B2

B3

B4

B5

 =


1
− 1

2
1
6

0
− 1

30

0

 B⃗(1) = B⃗+ =



B+
0

B+
1

B+
2

B+
3

B+
4

B+
5

 =


1
1
2
1
6

0
− 1

30

0


It applies: D:9

Example 8 (Toeplitz matrices) m = 6 matrices that have in the first column V⃗ (h)
or B⃗(h) vectors

V̂ (h) =


V0(h) 0 0 0 0 0
V1(h) V0(h) 0 0 0 0
V2(h) V1(h) V0(h) 0 0 0
V3(h) V2(h) V1(h) V0(n) 0 0
V4(h) V3(h) V2(h) V1(h) V0(h) 0
V5(h) V4(h) V3(h) V2(h) V1(h) V0(h)



B̂(h) =


B0(h) 0 0 0 0 0
B1(h) B0(h) 0 0 0 0
B2(h) B1(h) B0(h) 0 0 0
B3(h) B2(h) B1(h) B0(n) 0 0
B4(h) B3(h) B2(h) B1(h) B0(h) 0
B5(h) B4(h) B3(h) B2(h) B1(h) B0(h)


It applies: D:9;13

Example 9 (T matrices) T (h, 1) matrices of the pèowers of T and of Z. The first
is T (h, 1) = Th =:

=


1 0 0 0 0 0
h 1 0 0 0 0
h2 2h 1 0 0 0
h3 3h2 3h 1 0 0
h4 4h3 6h2 4h 1 0
h5 5h4 10h3 10h2 5h 1

 Zh =


1 0 0 0 0 0
2h 1 0 0 0 0
3h2 3h 1 0 0 0
4h3 6h2 4h 1 0 0
5h4 10h3 10h2 5h 1 0
6h5 15h4 20h3 15h2 6h 1


Note that the first is a T-composite matrix, the second a Z-composite one
It applies: D:6,14,15,16;

Example 10 (T-composite matrix and Hadamard product) m=6

T ◦ B̂(h) =


1B0(h) 0 0 0 0 0
1B1(h) 1B0(h) 0 0 0 0
1B2(h) 2B1(h) 1B0(h) 0 0 0
1B3(h) 3B2(h) 3B1(h) 1B0(h) 0 0
1B4(h) 4B3(h) 6B2(h) 4B1(h) 1B0(h) 0
1B5(h) 5B4(h) 10B3(h) 10B2(h) 5B1(h) 1B0(h)


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Z ◦ B̂(h) =


1B0(h) 0 0 0 0 0
2B1(h) 1B0(h) 0 0 0 0
3B2(h) 3B1(h) 1B0(h) 0 0 0
4B3(h) 6B2(h) 4B1(h) 1B0(h) 0 0
5B4(h) 10B3(h) 10B2(h) 5B1(h) 1B0(h) 0
6B5(h) 15B4(h) 20B3(h) 15B2(h) 6B1(h) 1B0(h)



T ◦ V̂ (h) =


1V0(h) 0 0 0 0 0
1V1(h) 1V0(h) 0 0 0 0
1V2(h) 2V1(h) 1V0(h) 0 0 0
1V3(h) 3V2(h) 3V1(h) 1V0(n) 0 0
1V4(h) 4V3(h) 6V2(h) 4V1(h) 1V0(h) 0
1V5(h) 5V4(h) 10V3(h) 10V2(h) 5V1(h) 1V0(h)


Note that the first and third are T-composite matrices, while the second is Z-composite
It applies: D: 14

3 From the umbral theorem to the translation of
Bernoulli polynomials

3.1 Umbral theorem and commutativity of T-matrices
Proposition 1 (Umbral theorem) Indices as exponents of powers of binome. Given
two matrices of order m, T-composed by the Hadamard product between T and a tri-
angular Toeplitz matrix, their row times column product turns out such that: 1:

(T ◦ X̂)(T ◦ Ŷ ) = T ◦ R̂ where R⃗ has components Rj =

j∑
k=0

(
j

k

)
Xj−kYk

for j ranging from 0 to m− 1
It applies: D:3,13,14 is applied: E:11; P:2,3,18

Indeed keeping in mind D:3 and D:13 the components of T ◦ R̂ are:

[T ◦ R̂]r,c =

(
r − 1

c− 1

)
r−c∑
k=0

(
r − c

k

)
Xr−c−kYk if c ≤ r, otherwise 0

Also starting from the components:

[T ◦ X̂]r,k =

(
r − 1

k − 1

)
Xr−k if c ≤ r, otherwise 0

[T ◦ Ŷ ]k,c =

(
k − 1

c− 1

)
Yk−c if c ≤ r, otherwise 0

The row-by-column product of the two matrices excluding the zero summation values
([T ◦ Ŷ ]k,c) = 0 if k < c) due to triangolarity is:

r∑
k=c

[T ◦ X̂]r,k[T ◦ Ŷ ]k,c =

r∑
k=c

(
r − 1

k − 1

)
Xr−k

(
k − 1

c− 1

)
Yk−c =

=

r∑
k=c

(r − 1)!

(k − 1)!(r − k)!

(k − 1)!

(c− 1)!(k − c)!
Xr−kYk−c =

1since the indices act as the exponents in the development of the power of the binomial
the conventions of umbral calculus allow us to write Rj = (X + Y )j

9



=
(r − 1)!

(c− 1)!(r − c)!

r∑
k=c

(r − c)!

(r − k)!(k − c)!
Xr−kYk−c =

(
r − 1

c− 1

)
r∑

k=c

(
r − c

k − c

)
Xr−kYk−c =

=

(
r − 1

c− 1

)
r−c∑
k=0

(
r − c

k

)
Xr−c−kYk = [T ◦ R̂]r,c

In fact, as can be verified, the variations in the last summation do not vary the addends.
q.e.d.

Proposition 2 (Commutativity corollary of composite T-matrices)

(T ◦ X̂)(T ◦ Ŷ ) = (T ◦ Ŷ )(T ◦ X̂)

It applies: D:3,13,14 P:1 is applied in: E:11; P:16,17,19,28;

Immediate consequence of P:1 and of the commutativity of ordinary multiplication.
q.e.d.

Example 11 (Umbral) with m=4 components
1X0 0 0 0
1X1 1X0 0 0
1X2 2X1 1X0 0
1X3 3X2 3X1 1X0



1Y0 0 0 0
1Y1 1Y0 0 0
1Y2 2Y1 1Y0 0
1Y3 3Y2 3Y1 1Y0

 =


1R0 0 0 0
1R1 1R0 0 0
1R2 2R1 1R0 0
1R3 3R2 3R1 1R0


R0 = 1X0Y0

R1 = 1X1Y0 + 1X0Y1

R2 = 1X2Y0 + 2X1Y1 + 1X0Y2

R3 = 1X3Y0 + 3X2Y1 + 3X1Y2 + 1X0Y3

It applies: P: 1,2

3.2 Additivity and definition of powers of T
Proposition 3 (Additivity of matrices T composed with V)

(T ◦ V̂ (h))(T ◦ V̂ (q)) = T ◦ V̂ (h+ q)

It applies: D:3,8,13,14; P:1 is applied in: P:7,8; D:15.

For umbral theorem (P:1) the product is T ◦ R̂ with

Rj =

j∑
j=0

(
j

k

)
Vk(h)Vj−k(q) =

j∑
j=0

(
j

k

)
hkqj−k = (h+ q)j = Vj(h+ q)

for which R⃗ = V⃗ (h+ q) and therefore the result of the product of the two T-composed
matrices is T ◦ V̂ (h+ q) . q.e.d.

Definition 15 (Matrices of powers of T)) Th (T-composed matrices)

Th = T ◦ V̂ (h) h ∈ C

Special cases: T 0 = U T 1 = T
It applies: D:3,8,13; P:3; is applied in: E:9 P:5,8,9,10,11,13,14,17,18,
19,20,26,27,28,29,30,31,39,42,60,61.
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3.3 Two Special cases of T(h,d)
Proposition 4 (First identity for T(0,d))

T (0, d) = Ṽ (d)

It applies: D:6,8,12; is applied in: P:7,8,13,14.

Per D:6

[T (0, d)]r,c =

(
r − 1

c− 1

)
0r−cdc−1 if c ≤ r, otherwise 0

For the initial convention of considering 00 = 1 only the terms with r = cr do not they
cancel. So the previous one becomes

[T (0, d)]r,c = dc−1 if c = r, otherwise 0

which is the definition of a diagonal matrix (1, d, d2..) i.e. (V0(d), V1(d), V2(d)...) and
therefore precisely with the components of the vector V⃗ (d) as elements of the diagonal.

Proposition 5 (Second identity for T(h,1))

T (h, 1) = Th

It applies: D:6,13,14,15; is applied in: P:7,8,13,14.

For D:15 Th = T ◦ V̂ (h) Being [T ]r,c =
(
r−1
c−1

)
if c ≤ r, otherwise 0 e

[V̂ (h)] = hr−c if c ≤ r, otherwise 0

multiplying element by element we have that [T ◦ V̂ (h)]r,c =
(
r−1
c−1

)
hr−c

which coincides with D:6 [T (h, d)]r,c =
(
r−1
c−1

)
hr−cdc−1 if c ≤ r, otherwise 0 when

d=1. For the transitivity of equality the thesis follows. q.e.d.

3.4 Addittivity and definition of powers of Z
Proposition 6 (Relations between T-composed and Z-composed matrices)

Z ◦ V̂ (k) = N(T ◦ V̂ (k))N−1

It applies: D:1,3,5,8,13,14; is applied in: P:27.

Multiplying on the left by N−1 we obtain the equivalent equation which we will prove:

N−1(Z ◦ V̂ (k)) = (T ◦ V̂ )N−1

Expanding the row-by-column product of the matrices of the first equality and taking
into account the zeros in the matrices we have:∑r

j=m[N−1]r,j [Z ◦ V̂ (k)]j,c =
∑r

j=r
1
j

(
j
c

)
Vj−c(k) =

1
r

(
r
c

)
Vr−c(k)∑m

j=1[T ◦ V̂ (k)]r,j [N
−1]j,c =

∑r
j=r

(
r−1
j−1

)
1
j
Vr−j(k) =

(
r−1
c−1

)
1
c
Vr−c(k) =

1
r

(
r
c

)
Vr−c(k)

in fact it results:

1

r

(
r

c

)
=

1

r

r!

c!(r − c)!
=

1

c

(r − 1)!

(c− 1)!(r − c)!
=

(
r − 1

j − 1

)
1

c

q.e.d.

Proposition 7 (Addittivity of Z-composed matrices with V )

(Z ◦ V̂ (h))(Z ◦ V̂ (q)) = Z ◦ V̂ (h+ q)

It applies: D:1,2,3,5,13,14; P:3,6; is applied in: P:8; D:16.
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Substituting according to P:6 we obtain:

N(T ◦ V̂ (h))N−1N(T ◦ V̂ (q))N−1 = N(T ◦ V̂ (h+ q))N−1

being N−1N = U we have:

N(T ◦ V̂ (h))(T ◦ V̂ (q))N−1 = N(T ◦ V̂ (h+ q))N−1

So the addition of T (P:3) proves equivalence and thus the thesis. q.e.d.

Definition 16 (Matrices of powers of Z)

Zh = Z ◦ V (h) h ∈ C

Special cases: Z0 = U Z1 = Z
It applies: D:2,5,8,13; P:7; is applied in: E:9,10 P:8,27,28,30,53

3.5 Abelian groups and no
Proposition 8 (Abelian groups of powers)

Th additive group of powers of T

Zh additive group of powers of Z

Ṽ (p) Vandermondian multiplicative group

It applies: D:2,3,5,12,15,16; P:3,7; is applied in: P:9;

The set of matrices Th with respect to the product of matrices forms a abelian group
isomorphic to ordinary numerical sum Indeed, for P:3 and for the associative property
we have:
T 1 = T ThT−h = T 0 = U ThT q = T qTh = Th+q

Similarly for P:7 we have:
Z1 = Z ZhZ−h = Z0 = U ZhZq = ZqZh = Zh+q

For p ̸= 0 the product rows by columns between diagonal matrices gives
Ṽ (1) = U Ṽ (p)Ṽ ( 1

p
) = U Ṽ (p)Ṽ (q) = Ṽ (pq)

q.e.d.

Proposition 9 Matrices for linear trasformation

T (h, d)V⃗ (j) = V⃗ (h+ dj)

Particular case: (traslation of V⃗ (j))

ThV⃗ (j) = V⃗ (h+ j)

It applies: D:6,8,15; is applied in: E:12; P:10,16,17,19,39.

Carrying out the product rows by columns
∑m

k=1[T (h, d)]r,k[V⃗ (j)]k :
substituting according to the definitions given and remembering that, for triangularity
of the matrix,

∑r
k=1

(
r−1
k−1

)
hr−kdk−1jk−1 =

∑r
k=1

(
r−1
k−1

)
hr−k(dj)k−1 = (h + dj)r−1 =

[V⃗ (h+ dj)]r q.e.d.

Example 12 (Binomial matrices) m = 6 T (h, d) we have:
1 0 0 0 0 0
h d 0 0 0 0
h2 2hd d2 0 0 0
h3 3h2d 3hd2 d3 0 0
h4 4h3d 6h2d2 4hd3 d4 0
h5 5h4d 10h3d2 10h2d3 5hd4 p5




1
j
j2

j3

j4

j5

 =


1

h+ dj
(h+ dj)2

(h+ dj)3

(h+ dj)4

(h+ dj)5


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expressible as:
T (h, d)V⃗ (j) = V⃗ (h+ dj)

It applies: P:9

Proposition 10 (Non commutative group) The set of matrices T (h, d) with re-
spect to the product it forms a non-commutative group isomorphic to that of composi-
tion of linear functions with one variable
It applies: D:6,15; P:9; is applied in: P:11.

Per P:9 si ha T (h, d)V⃗ (j) = V⃗ (h+ dj). T (h, d) matrix induces a linear transformation
on the variable of the Vandermonde vector by which it multiplies. The product of two
matrices of this type, by the associativity of the product rows by columns, corresponds
to the composition of two linear functions q.e.d.

3.6 Properties of T(h,d)
Proposition 11 (Product of linear terasformations)

T (a, b)T (x, y) = T (a+ bx, by)

It applies: D:6,15; P:10; is applied in: E:13; P:13,14.

In fact, the result is T (a, b)T (x, y)V⃗ (j) = T (a, b)V⃗ (x+ yj) =
= V⃗ (a+ b(x+ yj)) = V⃗ (a+ bx+ byj) = T (a+ bx, by)V⃗ (j) =
= T (a+ bx, by)V⃗ (j) from which, comparing the extremes, the thesis. q.e.d.

Proposition 12 (Inverse of a linear transformation) For b ̸= 0

T (h, d)T (−h

d
,
1

d
) = T (−h

d
,
1

d
)T (h, d) = T (0, 1) = U

It applies: D:2,6,15; P:11; is applied in: P:13,14.

Immediate consequence of the product rule seen previously (P:11) q.e.d.

Example 13 (Inverse binomial matrices) m = 4, T (−h
d
, 1
d
)−1T (h, d) = U

1 0 0 0
− h

d2
1
d

0 0
h2

d4
−2 h

d3
1
d2

0

−h3

d6
3h2

d5
−3 h

d4
1 1
d3



1 0 0 0
h d 0 0
h2 2hd d2 0
h3 3h2d 3hd2 d3

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


It applies: P:12.

Proposition 13 (Decomposition of T(h,d) into the product of two subgroups)

T (h, d) = ThṼ (d)

It applies: D:6,8,12,15; P:4,5,11; is applied in: E:14; P:14,29,42.

Recalling that for P:4,5 it result T (h, 1) = Th e T (0, d) = Ṽ (d) and calculating the
product T (1, h)T (0, d) on the basis of P:11 gives the thesis. q.e.d.

Proposition 14 (Decomposed Product Inversion)

ThṼ (d) = Ṽ (d)T
h
d

It applies: D:6,8,12,15; P:4,5,11,13; is applied in: E:14,15; P:29,42.
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For P:11 risulta che T (0, d)T (0, h
d
) = T (h, d). Substituting according to P:4,5,13 you

get the thesis. q.e.d.

Example 14 (Decomposed binomial matrices) m = 4 ThV̂ (d) = T (h, d) :
1 0 0 0
h 1 0 0
h2 2h 1 0
h3 3h2 3h 1



1 0 0 0
0 d 0 0
0 0 d2 0
0 0 0 d3

 =


1 0 0 0
h d 0 0
h2 2hd d2 0
h3 3h2d 3hd2 d3


It applies: P:13.

Example 15 (Decomposed binomial matrices) m = 4 Ṽ (d)T
h
d = T (h, d) :


1 0 0 0
0 d 0 0
0 0 d2 0
0 0 0 d3




1 0 0 0
h
d

1 0 0
h2

d2
2h

d
1 0

h3

d3
3h2

d2
3h

d
1

 =


1 0 0 0
h d 0 0
h2 2hd d2 0
h3 3h2d 3hd2 d3


It applies: P:14.

3.7 Inversion and translations in Bernoulli Polynomials
Proposition 15 (Inversion property of Bernoulli polynomials) Provides recur-
sive formulas to express the Bernoulli polynomials in terms of the previous ones.

AB⃗(x) = NV⃗ (x)

m-th row for column:
∑m

k=1

(
m

k−1

)
Bk−1(x) = mxm−1

Special case: AB⃗ = V⃗ (0)

m-th row for column:
∑m

k=1

(
m

k−1

)
Bk−1 =

{
1 if m = 1

0 if m > 1

It applies: D:1,4,8,9; is applied in: P:16,62.

the first equation is obtained from the definition B⃗(n) = A−1NV⃗ (n) (D:9) by multi-
plying the two sides on the left by A.
Passing to the m-th component we obtain the well-known inversion formula of Bernoulli
polynomials which allows us to obtain them recursively. q.e.d.

The particular case can be explained with the simple observation that NV⃗ (0) =
V⃗ (0) By varying m this equation, solved with respect to the index Bernoulli number
major, provides a simple recursive formula for calculating these numbers. It was
precisely this formula that in 1842 was chosen to be implemented in that first program
that anticipated the information age by over a century.[11]

Proposition 16 (A−1N is a T-composite matrix)

A−1N = T ◦ B̂(0)

It applies: D:1,4,9,13,14; P:2,9,15 is applied in: P:17,29.

Multiplying both sides on the right by N−1 gives A−1 = F
with F = T ◦ B̂(0)N−1

[F ]r,c =
1

c

(
r − 1

c− 1

)
Br−c(h) =

1

r

(
r

c

)
Br−c se c ≤ r otherwise 0
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Given the group structure of the product between matrices, the uniqueness of the
neutral element allows us to state that if FA = U then F = A−1.
Given the component of F and of A (D:4), taking into account the null terms due to
the lower triangular matrices and in particular the fact that [A]k,c = 0 for k < c, the
product r-th row by c-th column (r = 1...m; c = 1...m) is

m∑
k=1

[F ]r,k[A]k,c =

r∑
k=c

1

r

(
r

k

)
Br−k

(
k

c− 1

)
se r ≥ c otherwise 0

Developing the case r ≥ c we have:

1

r

r∑
k=c

r!

k!(r − k)!

k!

(c− 1)!(k − c+ 1)!
Br−k =

=
1

r

r∑
k=c

r!

(c− 1)!

1

(r − k)!(k − c+ 1)!
Br−k =

=
1

r

r∑
k=c

r!

(c− 1)!(r − c+ 1)!

(r − c+ 1)!

(r − k)!(k − c+ 1)!
Br−k =

=
1

r

r∑
k=c

(
r

c− 1

)(
r − c+ 1

r − k

)
Br−k =

=
1

r

(
r

c− 1

)
r∑

k=c

(
r − c+ 1

r − k

)
Br−k =

=
1

r

(
r

c− 1

)
u∑

q=1

(
u

q − 1

)
Bq−1 =

{
0 if r ̸= c,

1 if r = c.
= δr,c

In fact, in the factor resulting from the summation where we set q = r − k + 1 and
u = r−c+1 we have obtained the fundamental property of Bernoulli numbers already
seen (P:15) Therefore the matrix produced is composed of all 0s except the 1s on the
main diagonal, where r = c, which is precisely the neutral element U, q.e.d.

Example 16 ordre m=4 T ◦ B̂ N−1 = A−1
1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 ◦


B0 0 0 0
B1 B0 0 0
B2 B1 B0 0
B3 B2 B1 B0



1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4

 =

=


(
0
0

)
B0 0 0 0(

1
0

)
B1

(
1
1

)
B0 0 0(

2
0

)
B2

(
2
1

)
B1

(
2
2

)
B0 0(

3
0

)
B3

(
3
1

)
B2

(
3
2

)
B1

(
3
3

)
B0



1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4

 =

=


1
(
0
0

)
B0 0 0 0

1
(
1
0

)
B1

1
2

(
1
1

)
B0 0 0

1
(
2
0

)
B2

1
2

(
2
1

)
B1

1
3

(
2
2

)
B0 0

1
(
3
0

)
B3

1
2

(
3
1

)
B2

1
3

(
3
2

)
B1

1
4

(
3
3

)
B0

 =


1 0 0 0
− 1

2
1
2

0 0
1
6

− 1
2

1
3

0
0 1

4
− 1

2
1
4


It applies: P:16;

Proposition 17 (Translation Vector B)

ThB⃗(n) = B⃗(h+ n)
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m-th row by column:

m∑
k=1

(
m− 1

k − 1

)
Bk−1(n) = Bm−1(h+ n)

It applies: D:1,4,9,12,14,15; P:2,9,16; is applied in: P:18,19,20,58.

D:9 give us B⃗(n) = A−1NV⃗ (n) from which inversely, multiplying the two left-sided
for N−1A, we obtein V⃗ (n) = N−1AB⃗(n) by substituting this value in the equation
ThV⃗ (n) = V⃗ (n+ h), obteined from P:9 considering Th = T (h, 1), we obtein:

ThN−1AB⃗(n) = N−1AB⃗(h+ n)

multiplying on the left by A−1N

A−1NThN−1AB⃗(n) = N−1AB⃗(h+ n)

Being T-composite and therefore commutative matrices (P:2) both Th = T ◦ V⃗ (h)
(D:15) and A−1N (P:16) is A−1NTh = ThA−1N . Finally, since A−1NN−1A = U
follows the thesis. q.e.d.

Proposition 18 (Translations for T-composed Bernoulli matrices)

T q(T ◦ B̂(h)) = T ◦ B̂(q + h)

Special case:
T q(T ◦ B̂) = T ◦ B̂(q)
It applies: D:3,9,13,15; P:1,17; is applied in: P:20,29.

For D:15 it result Th = T ◦ V̂ (h) and therefore by the umbral theorem (P:1) the
product between T-composed matrices must be a T-composed matrix of the form T
T ◦ R̂ with

Rj =

j∑
k=0

(
j

k

)
Vk(h)Bj−k(q) =

j∑
k=0

(
j

k

)
hkBj−k(q) =

=

j+1∑
k=1

(
j

k − 1

)
hk−1Bj−k+1(q) = Bj+1(h+ q)

in fact the last two summations as k varies differently produce the same effects on
indices, exponents and binomial coefficients and therefore by virtue of the previous
P:17 we herefore have R⃗ = B⃗(h+ q) and therefore the matrix B̂(h+ q) q.e.d.

Proposition 19 ( Faulhaberian bridge theorem) Establishes a new bridge between
V⃗ (h) and B⃗(h) after D:9

B⃗(h) = (T ◦ B̂)V⃗ (h)

m-th row by column:

m∑
k=1

(
m− 1

k − 1

)
Bm−kn

k−1 = Bm−1(h)

It applies: D:3,8,9,12,13,15; P:2,9,17; is applied in: E:17; P:16,20.
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The thesis is true for h=0:
B⃗(0) = (T ◦ B̂)V⃗ (0)

In fact the vector V⃗ (0), first column of U matrix, gives us the first column of matrix
T ◦ B̂ which is the element-by-element product between V⃗ (1) first column of T and B⃗

first column of B̂
From this particular equation, multiplying the two sides on the left by Th we obtain:

ThB⃗(0) = Th(T ◦ B̂)V⃗ (0)

By the traslation theorem B⃗ (P:17) and being Th = T ◦ V⃗ (h) for the commutativity
of T-composed matrices (P:2)

B⃗(h) = (T ◦ B̂)ThV⃗ (0)

finally, ThV⃗ (0) = V⃗ (h) by the translation theorem (P:9) then follows the thesis. q.e.d.

Example 17 order m=4 (T ◦ B̂)V⃗ (n) =

(
1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 ◦


B0 0 0 0
B1 B0 0 0
B2 B1 B0 0
B3 B2 B1 B0

)

1
n
n2

n3

 =

=


(
0
0

)
B0 0 0 0(

1
0

)
B1

(
1
1

)
B0 0 0(

2
0

)
B2

(
2
1

)
B1

(
2
2

)
B0 0(

3
0

)
B3

(
3
1

)
B2

(
3
2

)
B1

(
3
3

)
B0



1
n
n2

n3

 =

=


(
0
0

)
B0(

1
0

)
B1 +

(
1
1

)
B0n(

2
0

)
B2 +

(
2
1

)
B1n+

(
2
2

)
B0n

2(
3
0

)
B3 +

(
3
1

)
B2n+

(
3
2

)
B1n

2 +
(
3
3

)
B0n

3

 =


∑1

k=1

(
0

k−1

)
B1−kn

k−1∑2
k=1

(
1

k−1

)
B2−kn

k−1∑3
k=1

(
2

k−1

)
B3−kn

k−1∑4
k=1

(
3

k−1

)
B4−kn

k−1

 =

=


B0(n)
B1(n)
B2(n)
B3(n)

 =


1

− 1
2
+ n

1
6
− n+ n2

1
2
n− 3

2
n2 + n3


It applies: P:20.

Proposition 20 ( Generalized bridge theorem)

(T ◦ B̂(q))V⃗ (h) = B⃗(h+ q)

m-th row per column:

m∑
k=1

(
m− 1

k − 1

)
Bm−k(q)n

k−1 = Bm−1(h+ q)

It applies: D:8,13,14,15; P:17,18,19; is applied in: E:17; P:60.

Indeed for the P:19 we have:

(T ◦ B̂(0))V⃗ (h) = B⃗(h)

Moreover per P:18 we have:
T q(T ◦ B̂(0)) = T ◦ B̂(q)
and for P:17 si ha:
T qB⃗(h) = B⃗(h+ q)
So multiplying the two sides on the left by T q the thesis follows. q.e.d.
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Example 18 (Matrix T ◦ B⃗(h) and Bernoulli polynomials) (T ◦ B̂(h))V⃗ (n) =
B⃗(n+ h) order m = 6 :

1B0(h) 0 0 0 0 0
1B1(h) 1B0(h) 0 0 0 0
1B2(h) 2B1(h) 1B0(h) 0 0 0
1B3(h) 3B2(h) 3B1(h) 1B0(h) 0 0
1B4(h) 4B3(h) 6B2(h) 4B1(h) 1B0(h) 0
1B5(h) 5B4(h) 10B3(h) 10B2(h) 5B1(h) 1B0(h)




1
n
n2

n3

n4

n5

 = B⃗(n+ h)

It applies: P:20.

4 Properties of matrices in semi-opposite rela-
tionship

Proposition 21 (semi-opposed matrices) Double multiplication by J

X = JXJ

It applies: D:2,11; It is applied in: E:4; P:22,23,24,25,26.

In fact, setting [X]r,c = xr,c and remembering thet diagonal matrix
[J ]r,c = (−1)r+1 if r=c otherwise 0
multiplying rows by columns JX changes sign to even rows for which [JX]r,c =
xr,c(−1)r+1 Subsequent multiplication changes sign to even columns so [JXJ ]r,c =
xr,c(−1)r+1(−1)c+1 = xr,c(−1)r+c+2 = xr,c(−1)r+c So X and JXJ are in semi-
opposition relations for which X = JXJ . q.e.d.

4.1 Properties
Proposition 22 (Double semi-opposition) Double moltiplication by J The semi-
opposite of the semi-opposite of X is X itself:

X = X

It applies: D:2,11; P:21.

Indeed J(JXJ)J = UXU = X q.e.d.

Proposition 23 (Simmetric property) Semi-opposition reciprocity

Y = X equals X = Y

It applies: D:2,11; P:21.

Indeed Y = X for P:21 can be written in the form Y = JXJ . Multiplying the two
members on the left by J we obtain the equivalent JY = XJ . Multiplying to the
right, the X is made explicit obtaining JY J = X which corresponds to X = Y q.e.d.

Proposition 24 (Inverse matrices keep the semi-opposite relationship) Given
an invertible matrix X

X = Y ⇐⇒ X−1 = Y −1

It applies: D:2,11; P:21; is applied in: P:41.

For P:21 the double implication is equivalent to Y = JXJ ⇐⇒ Y −1 = JX−1J
it is now easy to verify, remembering that JJ = U , that also the second members of
the two equalities are inverse JXJJX−1J = JXX−1J = JJ = U q.e.d.
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Proposition 25 (The product maintains the semi-opposition)

X1 = Y1 and X2 = Y2 ⇐⇒ X1X2 = Y1Y2

It applies: D:2,11; P:21; is applied in: P:42.

For P:21 the double implication is equivalent to
Y1 = JX1J and Y2 = JX2J ⇐⇒ X1X2 = JY1Y2J
is now easy, remembering that JJ = U , verify that Y1Y2 = JY1JJY2J = JY1Y2J
q.e.d.

4.2 Relationship between the power of T and its inverse
Proposition 26 (Power of T and its inverse are semi-opposite) .

T−h = Th

It applies: D:6,11,15; is applied in: P:42.

Per la D:15 Th = T ◦ V̂ (h) and T−h = T ◦ V̂ (−h).
For D:11 results:
[V̂ (h)]r,c = Vr−c(h) = (h)r−c and
[V̂ (−h)]r,c = Vr−c(−h) = (−h)r−c = (−1)r−chr−c.
Since 2c is even (−1)2c = 1 then (−1)r−c = (−1)r−c(−1)2c = (−1)r+c therefore when
r+ c is even the components of the two Toeplitz matrices V̂ (h) and V̂ (−h) coincide
and when r + c is odd are opposite. So by definition (11) the two matrices are semi-
opposite:

V̂ (−h) = V̂ (h)

Moving on to the composite T-matrices, the Hadamard product must be performed
by multiplying both, element by element, by the same T-matrix. Equal elements
multiplied by the same number remain equal. Thus the opposite elements for which:

T ◦ V̂ (−h) = T ◦ V̂ (h)

So by D:15 we get the thesis. q.e.d.

5 Notable product

5.1 Relations between matrices A,T and Z
Proposition 27 (Z-T relation)

Zk = NT kN−1

It applies: D:1,5,8,13,14,15,16; P:6; is applied in: P:28,30.

Since Zh = Z ◦ V̂ (h) (D:15) It is an immediate consequence of P:6

Proposition 28 (T-A-Z relation)

ThA−1 = A−1Zh

It applies: D:2,3,4,5,15,16; P:2,16,27.
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Explaining A−1 in P:16 and substituting we have

ThA−1 = Th(T ◦ B̂)N−1 =

for the commutativity of T-composite matrices (P:2)

= (T ◦ B̂)ThN−1 =

for the relation between the powers of T and of Z (P:27)

= (T ◦ B̂)N−1Zh = A−1Zh

5.2 New expressions for G(h,d)
Proposition 29 (First alternative expression for G(h,d))

G(h, d) = Ṽ (d)(T ◦ B̂(
h

d
))N−1

Special cases:
G(h, 1) = (T ◦ B̂(h))N−1

G(1, 1) = (T ◦ B̂(1))N−1 = (T ◦ B̂+)N−1

G(0, 1) = (T ◦ B̂(0))N−1 = (T ◦ B̂)N−1

It applies: D:1,2,3,7,8,9,12,13,15; P:13,14,18,16; is applied in: E:19;
P:54,61.

By the given definition (D:7) and for the equality T (h, d) = ThṼ (d) = Ṽ (d)T
h
d

(P:13,14), being NN−1 = U , the result is G(h, d) = Ṽ (d)T
h
d A−1NN−1 substitut-

ing A−1N on the basis P:16 we obtein:

G(h, d) = Ṽ (d)T
h
d (T ◦ B⃗)N−1

Making the argument of B⃗ explicit and then applying the translation (P:18) the
result is T

h
d (T ◦ B⃗(0)) = T ◦ B⃗(h

d
) substituting finally we have the thesis. q.e.d.

Example 19 order m=6 Ṽ (d)(T ◦ B̂(h
d
))N−1 =

G(h, d) =



1 1
1
B0(

h
d
) 0 0 0 0 0

1 d
1
B1(

h
d
) 1 d

2
B0(

h
d
) 0 0 0 0

1 d2

1
B2(

h
d
) 2 d2

2
B1(

h
d
) 1 d2

3
B0(

h
d
) 0 0 0

1 d3

1
B3(

h
d
) 3 d3

2
B2(

h
d
) 3 d3

3
B1(

h
d
) 1 d3

4
B0(

h
d
) 0 0

1 d4

1
B4(

h
d
) 4 d4

2
B3(

h
d
) 6 d4

3
B2(

h
d
) 4 d4

4
B1(

h
d
) 1 d4

5
B0(

h
d
) 0

1 d5

1
B5(

h
d
) 5 d5

2
B4(

h
d
) 10 d5

3
B3(

h
d
) 5 d5

4
B2(

h
d
) 6 d5

5
B1(

h
d
) 1 d5

6
B0(

h
d
)


It applies: P:29.

Proposition 30 (G expressed in Faulhaberian way)

G(h, d) = Ṽ (d)N−1(Z ◦ B̂(
h

d
))

G(h, 1) = N−1(Z ◦ B̂(h))

G(1, 1) = N−1(Z ◦ B̂(1)) = N−1(Z ◦ B̂+)

G(0, 1) = N−1(Z ◦ B̂(0)) = N−1(Z ◦ B̂)
It applies: D:1,2,3,5,7,8,9,12,13,15,16; P:27,29; is applied in: E:20 P:53.
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We will show that the second member can transform into that of the previous one
P:29. In fact, expressing Z as a function of T by P:27 and applying the properties of
diagonal matrices with the Hadamard product we have:

Ṽ (d)N−1(Z ◦ B̂(
h

d
)) = Ṽ (d)N−1(NTN−1 ◦ B̂(

h

d
)) =

= Ṽ (d)N−1N(TN−1 ◦ B̂(
h

d
)) = Ṽ (d)(T ◦ B̂(

h

d
)N−1) = Ṽ (d)(T ◦ B̂(

h

d
))N−1

q.e.d.

Example 20 order m=6 Ṽ (d)N−1(Z ◦ B̂(h
d
)) =

G(h, d) =



1 1
1
B0(

h
d
) 0 0 0 0 0

2 d
2
B1(

h
d
) 1 d

2
B0(

h
d
) 0 0 0 0

3 d2

3
B2(

h
d
) 3 d2

3
B1(

h
d
) 1 d2

3
B0(

h
d
) 0 0 0

4 d3

4
B3(

h
d
) 6 d3

4
B2(

h
d
) 4 d3

4
B1(

h
d
) 1 d3

4
B0(

h
d
) 0 0

5 d4

5
B4(

h
d
) 10 d4

5
B3(

h
d
) 10 d4

5
B2(

h
d
) 5 d4

5
B1(

h
d
) 1 d4

5
B0(

h
d
) 0

6 d5

6
B5(

h
d
) 15 d5

6
B4(

h
d
) 20 d5

6
B3(

h
d
) 15 d5

6
B2(

h
d
) 6 d5

6
B1(

h
d
) 1 d5

6
B0(

h
d
)


It applies: P:30.

5.3 First column of G(h,1)
Proposition 31 (First column of G(h,1) matrices)

G(h, 1)V⃗ (0) = B⃗(h)

Special cases:

G(0, 1)V⃗ (0) = B⃗(0) = B⃗ e G(1, 1)V⃗ (0) = B⃗(1) = B⃗+

It applies: D:1,3,7,8,9,13,14,15; P:17,29;
is applied in: P:47,49,50,59.

For P:29 we have G(0, 1) = (T ◦ B̃)N−1 then the product (T ◦ B̃)N−1V⃗ (0), V⃗ (0)
being the first column of U, unit vector, gives the first column of G(0, 1).
It turn out N−1V⃗ (0) = V⃗ (0), first column of N−1,
B̃V⃗ (0) = B⃗, first column of B̃
T V⃗ (0) = V⃗ (1), first column of T. So

G(0, 1) ⃗V (0) = V⃗ (1) ◦ B⃗ = B⃗

Now multiplying the two members of equality on the left by Th applying D:7 and P:17
we get G(h, 1) ⃗V (0) = B⃗(h) i.e. the thesis. q.e.d.

6 Sums of powers with arithmetic progression bases

6.1 G0 for successive integers starting from 0
6.1.1 G0 identity

Proposition 32 G0 identity

AV⃗ (k) = (1 + k)V⃗ (1 + k)− kV⃗ (k)
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It applies: D:4,8; is applied in: E:21; P:33,35.
Taking into account that for the triangularity of the matrix the result is [A]r,j =
0 if j > r , multiplying row by column, we have:

m∑
j=1

[A]r,j [V⃗ (k)]j =

r∑
j=1

(
r

j − 1

)
kj−1 = −kr +

r+1∑
j=1

(
r

j − 1

)
kj−1 = (k + 1)r − kr =

= [(k + 1)V⃗ (k + 1)]r − [kV⃗ (k)]r q.e.d.

Example 21 (Identity G0) order m=6 (1 + k)V⃗ (1 + k)− kV⃗ (k) =

=


(1 + k)− k
(1 + k)2 − k2

(1 + k)3 − k3

(1 + k)4 − k4

(1 + k)5 − k5

(1 + k)6 − k6

 =


(1 + k)
(1 + k)2

(1 + k)3

(1 + k)4

(1 + k)5

(1 + k)6

−


k
k2

k3

k4

k5

k6

 =


1

1 + 2k
1 + 3k + 3k2

1 + 4k + 6k2 + 4k3

1 + 5k + 10k2 + 10k3 + 5k4

1 + 6k + 15k2 + 20k3 + 15k4 + 6k5

 =

=


1 0 0 0 0 0
1 2 0 0 0 0
1 3 3 0 0 0
1 4 6 4 0 0
1 5 10 10 5 0
1 6 15 20 15 6




1
k
k2

k3

k4

k5

 = AV⃗ (k)

It applies: P:32.

6.1.2 G0 theorem

Proposition 33 (G0 theorem) Solves the problem of adding powers of successive
integers starting at 0.

S⃗(n) =

n−1∑
k=0

V⃗ (k)

It applies: D:8,10; P:32; is applied in: E:22; P:39,44.

Then adding, member by member, starting from 0, the first n Special cases of P:32

we obtain:
∑n−1

k=0 AV⃗ (k) =
∑n−1

k=0

(
(1+k)V⃗ (1+k)−kV⃗ (k)

)
Expanding the sum to the

second member, almost all the terms are simplified (telescopic effect). Then collecting
the matrix of the first member as a common factor and considering that 0V⃗ (0) = 0 we
obtain: A

∑n−1
k=0 V⃗ (k) = nV⃗ (n) from which by multiplying the two members on the

left by the inverse of A (possible because the determinant is m! ̸= 0), we obtain:

n−1∑
k=0

V⃗ (k) = A−1nV⃗ (n)

for D:7 we have G0 = A−1 for D:10 we have S⃗(n) = G0nV⃗ (n) from which, from which,
for the transitivity of equality, the thesis follows. q.e.d.

Example 22 (G0 theorem) Having chosen the case m=7 components and perform-
ing the product rows by columns: S⃗(n) = A−1nV⃗ (n)

22



S⃗(n) =



S0(n)
S1(n)
S2(n)
S3(n)
S4(n)
S5(n)
S6(n)


=



∑n−1
k=0 k0∑n−1
k=0 k1∑n−1
k=0 k2∑n−1
k=0 k3∑n−1
k=0 k4∑n−1
k=0 k5∑n−1
k=0 k6


=



1 0 0 0 0 0 0
1 2 0 0 0 0 0
1 3 3 0 0 0 0
1 4 6 4 0 0 0
1 5 10 10 5 0 0
1 6 15 20 15 6 0
1 7 21 35 35 21 7



−1

n
n2

n3

n4

n5

n6

n7


=

=



1 0 0 0 0 0 0
− 1

2
1
2

0 0 0 0 0
1
6

− 1
2

1
3

0 0 0 0
0 1

4
− 1

2
1
4

0 0 0
− 1

30
0 − 1

3
− 1

2
1
5

0 0
0 − 1

12
0 5

12
− 1

2
1
6

0
1
42

0 − 1
6

0 1
2

− 1
2

1
7





n
n2

n3

n4

n5

n6

n7


=



n
− 1

2
n+ 1

2
n2

1
6
n− 1

2
n2 + 1

3
n3

1
4
n2 − 1

2
n3 + 1

4
n4

− 1
30
n+ 1

3
n3 − 1

2
n4 + 1

5
n5

− 1
12
n2 + 5

12
n4 − 1

2
n5 + 1

6
n6

1
42
n− 1

6
n3 + 1

2
n5 − 1

2
n6 + 1

7
n7


It applies: P:33

6.1.3 G0* theorem Similar to G0 but in factored form.

Proposition 34 (G0*, factored polynomials) Similar to G0 but in factored form.

n−1∑
k=0

kV⃗ (k) = (U +A)−1(n− 1)nV⃗ (n)

It applies: D:2,4,8; E:23; P:32.

In fact, remembering that AV⃗ (k) = (1 + k)V⃗ (1 + k)− kV⃗ (k) we have:

(U +A)

n−1∑
k=0

kV⃗ (k) =

n−1∑
k=0

(U +A)kV⃗ (k) =

=

n−1∑
k=0

(
kV⃗ (k) + kAV⃗ (k)

)
=

n−1∑
k=0

(
kV⃗ (k) + k

(
(1 + k)V⃗ (1 + k)− kV⃗ (k

))
=

=

n−1∑
k=0

(
kV⃗ (k)+k(k+1)V⃗ (k+1)−k2V⃗ (k)

)
=

n−1∑
k=0

(
k(k+1)V⃗ (k+1)−k(k−1)V⃗ (k)

)
=

= (n− 1)nV⃗ (n) In fact, after the substitution (P:32) all the terms of the summation
due to the telescopic effect are simplified two by two except the first and the last.
Considering the equality between the first and the last term of the identity chain and
multiplying on the left the two members of the equality obtained by the inverse of (U+
A) with determinant (m+1)! ̸= 0 we obtein

∑n−1
k=0 kV⃗ (k) = (U +A)−1(n− 1)nV⃗ (n)

q.e.d.

Example 23 (G0, factored polynomials) order m=7

n−1∑
k=0

kV⃗ (k) =



∑n−1
k=0 k1∑n−1
k=0 k2∑n−1
k=0 k3∑n−1
k=0 k4∑n−1
k=0 k5∑n−1
k=0 k6∑n−1
k=0 k7


=



2 0 0 0 0 0 0
1 3 0 0 0 0 0
1 3 4 0 0 0 0
1 4 6 5 0 0 0
1 5 10 10 6 0 0
1 6 15 20 15 7 0
1 7 21 35 35 21 8



−1

n(n− 1)
n2(n− 1)
n3(n− 1)
n4(n− 1)
n5(n− 1)
n6(n− 1)
n7(n− 1)


=

23



=



1
2

0 0 0 0 0 0
− 1

6
1
3

0 0 0 0 0
0 − 1

4
1
4

0 0 0 0
1
30

1
30

− 3
10

1
5

0 0 0
0 1

12
1
12

− 1
3

1
6

0 0
− 1

42
− 1

42
1
7

1
7

− 5
14

1
7

0
0 − 1

12
− 1

12
5
24

5
24

− 3
8

1
8





n(n− 1)
n2(n− 1)
n3(n− 1)
n4(n− 1)
n5(n− 1)
n6(n− 1)
n7(n− 1)


=

=



n(n− 1) 1
2

n(n− 1)(− 1
6
+ 1

3
n)

n(n− 1)(− 1
4
n+ 1

4
n2)

n(n− 1)( 1
30

+ 1
30
n− 3

10
n2 + 1

5
n3)

n(n− 1)( 1
12
n+ 1

12
n2 − 1

3
n3 + 1

6
n4)

n(n− 1)(− 1
42

− 1
42
n+ 1

7
n2 + 1

7
n3 − 5

14
n4 + 1

7
n5)

n(n− 1)(− 1
12
n− 1

12
n2 + 5

24
n3 + 5

24
n4 − 3

8
n5 + 1

8
n6)


=



∑n−1
k=0 k1∑n−1
k=0 k2∑n−1
k=0 k3∑n−1
k=0 k4∑n−1
k=0 k5∑n−1
k=0 k6∑n−1
k=0 k7


It applies:P:34.

6.2 Pascal’s identity
Proposition 35 (historical identity)

(n+ 1)V⃗ (n+ 1)− V⃗ (1) = A

n∑
k=1

V⃗ (k)

The previous one expressed by the m-th component is equivalent to:

(n+ 1)m − 1 =

(
m

0

)
n∑

k=1

k0 +

(
m

1

)
n∑

k=1

k1 +

(
m

2

)
n∑

k=1

k2 + · · ·+

(
m

m− 1

)
n∑

k=1

km−1

It applies: D:4,8; P:32; is applied in: S:10.

Vectorial equivalence is easily explained:

AS⃗1(n) = A

n∑
k=1

V⃗ (k) =

n∑
k=1

AV⃗ (k) =

n∑
k=1

(
(1 + k)V⃗ (1 + k)− kV⃗ (k)

)
=

= (n+ 1)V⃗ (n+ 1)− V⃗ (1) In fact, after the substitution (P:32) all the terms of the
summation with effect telescopic simplify two by two except the first and last. q.e.d.

6.3 G1 per interi successivi inizianti da 1
6.3.1 G1 identity

Proposition 36 (G1 identity)

AV⃗ (k) = kV⃗ (k)− (k − 1)V⃗ (k − 1)

It applies: D:4,8,11; is applied in: E:24; P:37,38.

For the proof, we consider the product AV⃗ (k) For triangularity of the matrix we get
[A]r,j = 0 if j > r therefore, multiplying row by column, we have:

m∑
j=1

[A]r,j [V⃗ (k)]j =

r∑
j=1

(
r

j − 1

)
(−1)r+jkj−1 = kr +

r+1∑
j=1

(
r

j − 1

)
kj−1(−1)r+j =

24



= kr −
r+1∑
j=1

(
r

j − 1

)
kj−1(−1)r+j−1 = kr −

r∑
q=0

(
r

q

)
kq(−1)r−q =

(j has been replaced with q + 1 and equivalently subtracted the equal 2q from the
exponent of −1 )
= kr − (k − 1)r = [kV⃗ (k)]r − [(k − 1)V⃗ (k − 1)]r q.e.d.

Example 24 (G1 identity) order m=6
k − (k − 1)
k2 − (k − 1)2

k3 − (k − 1)3

k4 − (k − 1)4

k5 − (k − 1)5

k6 − (k − 1)6

 =


1

−1 + 2k
1− 3k + 3k2

−1 + 4k − 6k2 + 4k3

1− 5k + 10k2 − 10k3 + 5k4

−1 + 6k − 15k2 + 20k3 − 15k4 + 6k5


Using vectors and matrices and developing the product rows by columns, the above
becomes: 

(k)
(k)2

(k)3

(k)4

(k)5

(k)6

−


k − 1

(k − 1)2

(k − 1)3

(k − 1)4

(k − 1)5

(k − 1)6

 =


1 0 0 0 0 0
−1 2 0 0 0 0
1 −3 3 0 0 0
−1 4 −6 4 0 0
1 −5 10 −10 5 0
−1 6 −15 20 −15 6




1
k
k2

k3

k4

k5


which with the notation introduced simply corresponds to

kV⃗ (k)− (k − 1)V⃗ (k − 1) = AV⃗ (k)

It applies: P:36.

6.3.2 future G1 theorem

Proposition 37 (Future G1) Solves the problem of the sum of powers of successive
integers starting from 1 (even if D:7 still does not allow to deduce that G1 = A and
D:10 that S⃗+(n) =

∑n−1
k=0 V⃗ (1 + k)).

n−1∑
k=0

V⃗ (1 + k) = A
−1

nV⃗ (n)

It applies: D:4,8,10,11; P:36; is applied in: E:25; P:40,41.

Adding member by member, starting from 1, the first n Special cases of IG1 (P:36)
we have:

n∑
k=1

AV⃗ (k) =

n∑
k=1

(
kV⃗ (k)− (k − 1)V⃗ (k − 1)

)
Expanding the sum to the second member almost all the terms, except the first and
the last, are simplified two by two with the opposites (telescopic effect). Taking into
account that −0V⃗ (0) = 0 and then collecting the matrix with the first member as a
common factor, we obtain:

A

n∑
k=1

V⃗ (k) = nV⃗ (n)

finally, to make the summation explicit, both sides of the equation on the left are
multiplied by the inverse of the matrix A (existing because the triangular matrix has
a determinant other than zero being the product of the diagonal equal to m!) obtaining

n∑
k=1

V⃗ (k) = A
−1

nV⃗ (n) =

25



taking into account the equivalence of the two summation expressions which both
indicate the n addends V⃗ (1), V⃗ (2), ...V⃗ (n) defining a vector whose components are the
sums of the powers of successive integers starting from 1, the thesis follows. q.e.d

Example 25 (Future G1 theorem) order m=11 S⃗(1, 1, n) = A
−1

nV⃗ (n) =

=



1 0 0 0 0 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0 0 0
1
6

1
2

1
3

0 0 0 0 0 0 0 0
0 1

4
1
2

1
4

0 0 0 0 0 0 0
− 1

30
0 1

3
1
2

1
5

0 0 0 0 0 0
0 − 1

12
0 5

12
1
2

1
6

0 0 0 0 0
1
42

0 − 1
6

0 1
2

1
2

1
7

0 0 0 0
0 1

12
0 − 7

24
0 1

12
1
2

1
8

0 0 0
− 1

30
0 2

9
0 − 7

15
0 2

3
1
2

1
9

0 0
0 − 3

20
0 1

2
0 − 7

10
0 3

4
1
2

1
10

0
5
66

0 − 1
2

0 1 0 −1 0 5
6

1
2

1
11





n
n2

n3

n4

n5

n6

n7

n8

n9

n10

n11


=

performing the product rows by columns:

=



n
1
2
n+ 1

2
n2

1
6
n+ 1

2
n2 + 1

3
n3

1
4
n2 + 1

2
n3 + 1

4
n4

− 1
30
n+ 1

3
n3 + 1

2
n4 + 1

5
n5

− 1
12
n2 + 5

12
n4 + 1

2
n5 + 1

6
n6

1
42
n− 1

6
n3 + 1

2
n5 + 1

2
n6 + 1

7
n7

1
12
n2 − 7

24
n4 + 1

12
n6 + 1

2
n7 + 1

8
n8

− 1
30
n+ 2

9
n3 − 7

15
n5 + 2

3
n7 + 1

2
n8 + 1

9
n9

− 3
20
n2 + 1

2
n4 − 7

10
n6 + 3

4
n8 + 1

2
n9 + 1

10
n10

5
66
n− 1

2
n3 + n5 − n7 + 5

6
n9 + 1

2
n10 + 1

11
n11


=



∑n
k=1 k

0∑n
k=1 k

1∑n
k=1 k

2∑n
k=1 k

3∑n
k=1 k

4∑n
k=1 k

5∑n
k=1 k

6∑n
k=1 k

7∑n
k=1 k

8∑n
k=1 k

9∑n
k=1 k

10


It applies: P:37.

6.3.3 G1* theorem for factored polynomials

Proposition 38 (G1*, factored polynomials) Similar to G1 but in factored form.

n∑
k=1

kV⃗ (k) = (U +A)−1(n+ 1)nV⃗ (n)

It applies: D:2,4,8,11; P:36; is applied in: E:26.

(U +A)

n∑
k=1

kV⃗ (k) =

n∑
k=1

(U +A)kV⃗ (k) =

=

n∑
k=1

(
kV⃗ (k) + kAV⃗ (k)

)
=

n∑
k=1

(
kV⃗ (k) + k

(
kV⃗ (k)− (k − 1)V⃗ (k − 1)

))
=

=

n∑
k=1

(
kV⃗ (k)+k2V⃗ (k)−k(k−1)V⃗ (k−1)

)
=

n∑
k=1

(
k(1+k)V⃗ (k)−k(k−1)V⃗ (k−1)

)
=

= (n+1)nV⃗ (n) In fact, after the substitution (P:36) all the terms of the summation
due to the telescopic effect are simplified two by two except the first and the last. The
thesis is obtained by considering the equality between the first and the last term of
the identity chain and multiplying on the left the two members of the equality by the
inverse of (U +A) existing being the determinant (m+ 1)! ̸= 0 q.e.d.

26



Example 26 (G1*, factored polynomials ) order m=7

n∑
k=1

kV⃗ (k) =



∑n
k=1 k

1∑n
k=1 k

2∑n
k=1 k

3∑n
k=1 k

4∑n
k=1 k

5∑n
k=1 k

6∑n
k=1 k

7


=



2 0 0 0 0 0 0
−1 3 0 0 0 0 0
1 −3 4 0 0 0 0
−1 4 −6 5 0 0 0
1 −5 10 −10 6 0 0
−1 6 −15 20 −15 7 0
1 −7 21 −35 35 −21 8



−1

(n+ 1)n
(n+ 1)n2

(n+ 1)n3

(n+ 1)n4

(n+ 1)n5

(n+ 1)n6

(n+ 1)n7


=

=



1
2

0 0 0 0 0 0
1
6

1
3

0 0 0 0 0
0 1

4
1
4

0 0 0 0
− 1

30
1
30

3
10

1
5

0 0 0
0 − 1

12
1
12

1
3

1
6

0 0
1
42

− 1
42

− 1
7

1
7

5
14

1
7

0
0 1

12
− 1

12
− 5

24
5
24

3
8

1
8





n(n+ 1)
n2(n+ 1)
n3(n+ 1)
n4(n+ 1)
n5(n+ 1)
n6(n+ 1)
n7(n+ 1)


=

=



n(n+ 1) 1
2

n(n+ 1)( 1
6
+ 1

3
n)

n(n+ 1)( 1
4
n+ 1

4
n2)

n(n+ 1)(− 1
30

+ 1
30
n+ 3

10
n2 + 1

5
n3)

n(n+ 1)(− 1
12
n+ 1

12
n2 + 1

3
n3 + 1

6
n4)

n(n+ 1)( 1
42

− 1
42
n− 1

7
n2 + 1

7
n3 + 5

14
n4 + 1

7
n5)

n(n+ 1)( 1
12
n− 1

12
n2 − 5

24
n3 + 5

24
n4 + 3

8
n5 + 1

8
n6)


=



∑n
k=1 k

1∑n
k=1 k

2∑n
k=1 k

3∑n
k=1 k

4∑n
k=1 k

5∑n
k=1 k

6∑n
k=1 k

7


It applies: P:38.

6.4 Generalization to any arithmetic progression

6.5 Theorem G: for any arithmetic progression
Proposition 39 G theorem It solves the general problem of finding the sum of pow-
ers of bases in arithmetic progression of which the traditional problem of the sum of
powers of successive integers is a particular case.

S⃗(h, d, n) =

n−1∑
k=0

V⃗ (h+ dk)

It applies: D:8,10; P:9,33; is applied in: P:40,53,54,61.

The statement of this proposition is obtained from S⃗(n) =
∑n−1

k=0 V⃗ (k) (P:33 G0
theorem) by multiplying the two members on the left by the matrix T (h, d) .
In fact, for D:10 and D:7 the result is S⃗(n) = G0nV⃗ (n) = A−1nV⃗ (n) and G(h, d) =
T (h, d)A−1 so the first member of the equation to be multiplied becomes:

T (h, d)S⃗(n) = T (h, d)A−1nV⃗ (n) = G(h, d)nV⃗ (n) = S⃗(h, d, n)

the second member by applying the distributive property and the linear transformation
P:9:

T (h, d)

n−1∑
k=0

V⃗ (k) =

n−1∑
k=0

T (h, d)V⃗ (k) =

n−1∑
k=0

V⃗ (h+ dk)

q.e.d.
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Example 27 (On the sums of Vandermonde vectors) in arithmetic progression
(with m=6 components)

S⃗(0, 1, n) =

n−1∑
k=0

V⃗ (k) =



∑n−1
k=0 k0∑n−1
k=0 k1∑n−1
k=0 k2∑n−1
k=0 k3∑n−1
k=0 k4∑n−1
k=0 k5

 S⃗(1, 1, n) =

n−1∑
k=0

V⃗ (1+k) =

n∑
k=1

V⃗ (k) =



∑n
k=1 k

0∑n
k=1 k

1∑n
k=1 k

2∑n
k=1 k

3∑n
k=1 k

4∑n
k=1 k

5


It applies: D: 10; P:39.

Example 28 G theorem : sums of powers of 3k + 1 progression.
We now use the theorem G to compute sums of powers of integers which, when divided

by three, give a remainder of 1. The result is h = 1, d = 3. We choose m = 4 limiting
ourselves to the first 4 polynomials. To apply the theorem G we have to consider:

T (1, 3) =


1 0 0 0
1 3 0 0
1 6 9 0
1 9 27 27

 A−1 =


1 0 0 0
1 2 0 0
1 3 3 0
1 4 6 4


−1

=


1 0 0 0
− 1

2
1
2

0 0
1
6

− 1
2

1
3

0
0 1

4
− 1

2
1
4


Having obtained the matrix G(1, 3) = T (1, 3)A−1, performing the row-by-column

product, we have:

S⃗(1, 3, n) =


S0(1, 3, n)
S1(1, 3, n)
S2(1, 3, n)
S3(1, 3, n)

 =


∑n−1

k=0 (1 + 3k)0∑n−1
k=0 (1 + 3k)1∑n−1
k=0 (1 + 3k)2∑n−1
k=0 (1 + 3k)3

 =

=


1 0 0 0
− 1

2
3
2

0 0
− 1

2
− 3

2
3 0

1 − 9
4

− 9
2

27
4



n
n2

n3

n4

 =


n

− 1
2
n+ 3

2
n2

− 1
2
n− 3

2
n2 + 3n3

n− 9
4
n2 − 9

2
n3 + 27

4
n4


It applies: P:39.

6.5.1 G1 theorem

Proposition 40 (G1 corollary) It allows to express P:37 in the form S⃗+(n) =
G1nV⃗ (n)

G1 = A
−1

It applies: D:3,4,7,11; P:37,39.

From the definition D:7 it results G0 = A−1 for G theorem (P:39) as a special case
h = 1, d = 1 we have
S⃗+(n) =

∑n−1
k=0 V⃗ (1+ k) = G1nV⃗ (n) con G1 = TA−1 from P:37 we have

∑n−1
k=0 V⃗ (1+

k) = A
−1

nV⃗ (n) the comparison implies the thesis.

Proposition 41 (G0 and G1 are in semi-opposition relation)

G0 = G1

It applies: D:4,7,11; P:23,24,40; is applied in: 42,47,48.

From definition D:7 it results G0 = A−1 from P:40 it results G1 = A
−1 therefore

G−1
0 = A is semi-opposite of G−1

0 = A. Since A and A are in a semi-opposition
relationship for P:24 so are G0 and G1. So it will result in G1 = G0 and vice versa
(P:23). q.e.d.
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6.6 Semi-opposite pairs of matrices G
Proposition 42 (Semi-opposite pairs of G matrices)

G(h, d) = G(d− h, d)

It applies: D:7,11,15; P:13,14,25,26,41; is applied in: P:59.

P:41 establishes that G(0, 1) and G(1, 1) which for brevity we denote by G0 and
G1 are semi-opposite. For P:26 so are Th and T−h. Like all diagonal matrices Ṽ (d)
having all elements with odd row-column sum null, it is semi-opposite of itself. So for
P:25 the products ThṼ (d) and T−hṼ (d) are also semi-opposite. For the same reason,
the products must be semi-opposite:

ThṼ (d) G0 e T−hṼ (d) G1

The first product for P:13 and D:7 gives:

T (h, d)G0 = G(h, d)

The second, given that G1 = TG0 for D:7, is:

T−hṼ (d) TG0

thus replacing Ṽ (d) T with T dṼ (d) based on P:14 we have:

T−hT dṼ (d) TG0 = T d−hṼ (d) = G(d− h, d)

q.e.d.

7 Bernoulli numbers
Proposition 43 (Coefficients of the highest degree monomials) G0 = G(0, 1) =
A−1

∀m ∈ N+ [G0]m,m =
1

m
It applies: D:4,7; is applied in: P:44

Bearing in mind the method of algebraic complements for calculating the inverse ma-
trix:

[A−1]m,m = (−1)m+m

∣∣Am,m

∣∣∣∣Am

∣∣ =
(m− 1)!

m!
=

1

m

q.e.d

Proposition 44 (Polynomials of degree r) A triangular matrix G0 of order m
contains, in each row r (r = 1...m) the coefficients of polynomials of degree r cal-
culating sums of powers of successive integers starting from 0:

[G0]r,1n+ [G0]r,2n
2 + ...+ [G0]r,rn

r =

n−1∑
k=0

kr−1

It applies: D:7,10; P:33,43; is applied in: 46.

Indeed for G0 theorem (P:33) we have

S⃗(0, 1, n) = G0nV⃗ (n) =

n−1∑
k=0

V⃗ (k)
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taking into account that for the triangularity of the matrix [G0]r,j = 0 per j > r,the
product of the row r for the vector n ⃗V (n) gives:

[G0]r,1n+ [G0]r,2n
2 + ...+ [G0]r,rn

r =

n−1∑
k=0

kr−1

From P:43 we know that [G0]r,r = 1
r
̸= 0 so the degree of each polynomial is r.

q.e.d.

Proposition 45 (Differences between sums of n addends) The result is a vec-
tor whose components contain monomials of degree r − 1 and coefficients 1.

S⃗(1, 1, n)− S⃗(0, 1, n) = V⃗ (n)− V⃗ (0)

It applies: D:8,10; is applied in: P:46.

This is obtained by telescopic simplification from P:39. The result is therefore a
vector with components: 0, n, n2..., nm−1 , i.e. a vector of monomials of degree r-1
and coefficients 1 q.e.d.

Proposition 46 (Differenza tra le matrici gemelle)

[G1 −G0]r,c =

{
1 if r = c− 1

0 otherwise

It applies: D:7,10; P:44,45; is applied in P:47,48.

For D:10 we have S⃗(0, 1, n) = G0nV⃗ (n) = e S⃗(1, 1, n) = G1nV⃗ (n) passing to the r-th
component:

Sr−1(0, 1, n) = [G0]r,1n+ [G0]r,2n
2 + ...+ [G0]r,rn

r

Sr−1(1, 1, n) = [G1]r,1n+ [G1]r,2n
2 + ...+ [G1]r,rn

r

As demonstrated (P:45) the difference between the two polynomial vectors is the
vector 0, n, n2..., nm−1 . So for r > 1 it results:

Sr−1(1, 1, n)− Sr−1(0, 1, n) = nr−1

therefore the differences cancel all the monomials of the two polynomials except one
having degree r − 1, i.e. the second having degree (P:44). This proves that the two
vectors considered with their polynomials, after the first identical component, differ
only in the second monomials in degree. These are placed, in G1 and in G0, in the
diagonal immediately below the main one which instead contains the prime coefficients.
q.e.d.

7.1 Second Bernoulli numbers
Proposition 47 (Differences between the B⃗ and B⃗+ variants of Bernoulli numbers )
First and second Bernoulli numbers. 2

B+
r−1 = Br−1 if r ̸= 2 otherwise B+

1 = −B1 =
1

2

It applies: D:7,9; P:31,41,46; is applied in: P:55,56; S:10.

2OEIS integer sequences A027641/A027642 (first variant) and A164555/A027642 (second
variant)
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For P:46 the only difference between the first column of G1 and the corresponding one
in G0 is in the second element which also belongs to the diagonal differentiating the
two matrices.
For P:46 it is [G1]2,1− [G0]2,1 = 1 while for P:41 it results in [G1]2,1 = −[G0]2,1. From
this we get [G0]2,1 = − 1

2
and [G1]2,1 = 1

2
.

For P:31 and for D:9 we have [G0]r,1 = Br−1(0) = Br−1 while [G1]r,1 = Br−1(1) =
B+

r−1 So the first column of the matrix G1 contains the Bernoulli numbers B⃗(0) = B⃗
with the second component B1 = − 1

2
while the first column of G1 contains the variant

B⃗(1) = B⃗+ with B+
1 = 1

2
q.e.d.

7.2 Zero Bernoulli numbers
Proposition 48 (Zeros) in twin matrices (of order m)

if [G0]r,c = [G1]r,c = x and r + c is odd then x = 0

It applies: D:7,11; P:41,46; is applied in: P:49.

In fact, being G0 and G1 in an alternation relation (P:41) all the elements such that
the number of the row plus that of the column is odd must be opposite. On the other
hand it is known that, apart from the diagonal of the second degree coefficients, the
elements of the two matrices coincide (P:46) so that there remains only the possibility
that they are null, q.e.d.

Proposition 49 (Zero bernoulli number)

Bj = 0 for odd j > 1

It applies: D:9; P:31,48; is applied in: P:55.

For P:31 we have Br−1 = [G0]r,1 the sum of the indices r + 1, when the condition
is satisfied, is odd and for P :48 the elements corresponding to these indices are null.
q.e.d.

7.3 Bernoulli numbers from Pascal’s triangle

7.4 H, a binomial Hessemberg matrix and its variants
Definition 17 (Hessemberg matrix) From Pascal’s triangle

[H]r,c =

(
1 + r

c− 1

)
if c ≤ 1 + r otherwise 0

is applied in: E:29; P:50,51,52.

Proposition 50 (For the Bernoulli numbers)

Bm = (−1)m
∣∣H∣∣

(m+ 1)!
m ∈ N+

It applies: D:9,17; P:31; is applied in: E:30; P:31,51.

This formula (discovered by the author in 2007 [8]), directly relates the Bernoulli
numbers to Pascal’s triangle. We have seen that the matrix A which this time is
assumed to have order m+1 has an inverse matrix A−1 which has in the first column
the first degree coefficients of the polynomials coinciding with the Bernoulli numbers
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P:31. Bearing in mind the method of algebraic complements for calculating the inverse
matrix, we have:

[A−1]m+1,1 = Bm = (−1)m+2

∣∣A1,m+1

∣∣∣∣A∣∣ = (−1)m
∣∣H∣∣

(m+ 1)!

where is it:
[A−1]m+1,1 indicates the corresponding element of [A]m+1,1 in the inverse matrix∣∣A∣∣ = (m+ 1)! is the determinant of the triangular matrix of order m+1∣∣A1,m+1

∣∣ = ∣∣H∣∣ is the algebraic complement of order m (obtained by deleting
the first row and the last column) relative to the element [A]1,m+1 corresponding
to [A]m+1,1 in the transposition for calculating the inverse.

So the formula gives the Bernoulli numbers q.e.d.
Note This formula gives the most commonly used Bernoulli numbers with B1 = − 1

2
.

By omitting the factor (−1)n the sign of all numbers with odd index is changed, i.e.
only B1 given that, as demonstrated, the others are all null. It is therefore convenient
to simplify the formula by considering the variant with B1 = 1

2

Example 29 (H matrix) order m=10 components

H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 0 0 0 0 0 0 0 0
1 3 3 0 0 0 0 0 0 0
1 4 6 4 0 0 0 0 0 0
1 5 10 10 5 0 0 0 0 0
1 6 15 20 15 6 0 0 0 0
1 7 21 35 35 21 7 0 0 0
1 8 28 56 70 56 28 8 0 0
1 9 36 84 126 126 84 36 9 0
1 10 45 120 210 252 210 120 45 10
1 11 55 165 330 462 462 330 165 55

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 3024000

It applies: D:17; It is applied in: E:30.

Example 30 (Bernoulli numbers ) from Pascal’s triangle

B10 =
H

11!
=

3024000

39916800
=

5

66

It applies: E:29; P:50.

Proposition 51 (Only matrix) Variant X = (N + U)−1H

Bn =
∣∣X∣∣ for n > 0 with [X]r,c =

{
0 if c > 1 + r(
r+1
c−1

)
1

r+1
if c ≤ 1 + r

It applies: D:1,2,9,17; P:50; is applied in: P:52.

By the properties of determinants, dividing the rows by r + 1 with r = 1...n divides
the determinant of H by (n+ 1)! q.e.d.

Proposition 52 (Numerator and denominator) Variant with matrix C of order
n to obtain numerator and denominator, reduced to lowest terms, of Bernoulli numbers
from Pascal’s triangle

Bn =

∣∣C∣∣∏n
k=1[C]k,2

with [C]r,c =


0 if c > 1 + r(
r+1
c−1

)
if r + 1 is prime and r divides n(

r+1
c−1

)
1

r+1
otherwise

It applies: D:9,17; P:51; is applied in: E:31.
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It is obtained from the previous variant by conditioning the multiplication of 1
r+1

to
the condition of the Von Staudt-Clausen theorem. By the same theorem the obtained
numerator and denominator are reduced to their minima

Example 31 (Numerator and denominator) reduced to lowest terms in Bernoulli
numbers extracted from Pascal’s triangle

num(B10) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 0 0 0 0 0 0 0 0
1 3 3 0 0 0 0 0 0 0
1
4

1 3
2

1 0 0 0 0 0 0
1
5

1 2 2 1 0 0 0 0 0
1
6

1 5
2

10
3

5
2

1 0 0 0 0
1
7

1 3 5 5 3 1 0 0 0
1
8

1 7
2

7 35
4

7 7
2

1 0 0
1
9

1 4 28
3

14 14 28
3

4 1 0
1
10

1 9
2

12 21 126
5

21 12 9
2

1
1 11 55 165 330 462 462 330 165 55

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 5

den(B10) = 2.3.11 = 66
It applies: P:52.

8 So-called Faulhaber’s formula
Proposition 53 (Numerator and denominator) reduced to lowest terms in Bernoulli
numbers extracted from Pascal’s triangle

S⃗(h, d, n) = G(h, d) nV⃗ (n) G(h, d) = Ṽ (d) ◦N−1 ◦ Z ◦ B̂(
h

d
)

m-order matrices, product rows by column:

Sm−1(h, d, n) =

n−1∑
k=0

(h+ dk)m−1 =
dm−1

m

m∑
k=1

(
m

k

)
Bm−k

(
h

d

)
nk

It applies: D:1,5,7,8,9,10,12,13,14; P:30,39; is applied in: P:55,56,58.

The modification of the statement of the G theorem (P:39) is based on P:30 The
following formula is obtained by passing to the m-th component of the vector of sums
of powers q.e.d.

Proposition 54 (G theorem third formulation) Complete binomial coefficients

S⃗(h, d, n) = G(h, d) nV⃗ (n) G(h, d) = Ṽ (d)(T ◦ B̂(
h

d
))N−1

m-order matrices, product rows by column:

n−1∑
k=0

(h+ dk)m−1 = dm−1
m∑

k=1

1

k

(
m− 1

k − 1

)
Bm−k

(
h

d

)
nk

It applies: D:1,3,8,9,10,12,13,14; P:29,39,57,61.

The modification of the statement of theorem G (P:39) is based on P:29 The following
formula is obtained by passing to the m-th component of the vector of sums of powers
q.e.d.
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Proposition 55 (So-called Faulhaber formulas) Particular case of the second for-
mulation of the theorem G. Generally with "Faulhaber formula" we indicate the poly-
nomial formulas resolving sums of n powers of successive integers starting from 1.

S⃗(1, 1, n) = N−1(Z ◦ B̂+)nV⃗ (n)

m-th component:

Sm−1(1, 1, n) =

n−1∑
k=0

(1 + k)m−1 =

n∑
k=1

km−1 =
1

m

m∑
k=1

(
m

k

)
B+

m−kn
k

Sometimes it is preferred to avoid the use of the variant B⃗+ of the Bernoulli numbers
(P:47 different from this one only for the second element B1 = 1

2
. However, this forces

us to artificially complicate the formula by changing the sign of all Bernoulli numbers
of odd index, given that all the others are zero(P:49)

Sm−1(1, 1, n) =
1

m

m∑
k=1

(−1)m−k

(
m

k

)
Bm−kn

k

It applies: D:1,5,8,9,10,12,13,14; P:47,49,53.

Proposition 56 (So-called Faulhaber formulas) Particular case of the second for-
mulation of the theorem G. Sometimes it is preferable to give formulas resolving sums
of n powers of successive integers starting from 0. These too are called Faulhaber
formulas.

S⃗(0, 1, n) = N−1(Z ◦ B̂)nV⃗ (n)

m-th component:

Sm−1(0, 1, n) =

n−1∑
k=0

(1 + k)m−1 =

n∑
k=1

km−1 =
1

m

m∑
k=1

(
m

k

)
B+

m−kn
k

It applies: D:1,5,8,9,10,12,13,14; P:29,47,53;
is applied in: E:32.

Example 32 m=4 S⃗(0, 1, n) = N−1(Z ◦ B̂)nV⃗ (n) =
1
1

0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4



(
1
1

)
B0 0 0 0(

2
1

)
B1

(
2
2

)
B0 0 0(

3
1

)
B2

(
3
2

)
B1

(
3
3

)
B0 0(

4
1

)
B3

(
4
2

)
B2

(
4
3

)
B1

(
4
4

)
B0



n
n2

n3

n4

 =

=


1
1

(
1
1

)
B0 0 0 0

1
2

(
2
1

)
B1

1
2

(
2
2

)
B0 0 0

1
3

(
3
1

)
B2

1
3

(
3
2

)
B1

1
3

(
3
3

)
B0 0

1
4

(
4
1

)
B3

1
4

(
4
2

)
B2

1
4

(
4
3

)
B1

1
4

(
4
4

)
B0



n
n2

n3

n4

 =

=


1
1

(
1
1

)
B0n

1
2

(
2
1

)
B1n+ 1

2

(
2
2

)
B0n

2

1
3

(
3
1

)
B2n+ 1

3

(
3
2

)
B1n

2 + 1
3

(
3
3

)
B0n

3

1
4

(
4
1

)
B3n+ 1

4

(
4
2

)
B2n

2 + 1
4

(
4
3

)
B1n

3 + 1
4

(
4
4

)
B0n

4

 =

=


S0(0, 1, n)
S1(0, 1, n)
S2(0, 1, n)
S3(0, 1, n)

 =


1
1

∑1
k=1

(
1
k

)
B1−kn

k

1
2

∑2
k=1

(
2
k

)
B2−kn

k

1
3

∑3
k=1

(
3
k

)
B3−kn

k

1
4

∑4
k=1

(
4
k

)
B4−kn

k

 =


n

− 1
2
n+ 1

2
n2

1
6
n− 1

2
n2 + 1

3
n3

1
4
n2 − 1

2
n3 + 1

4
n4


It applies: D:4,6; P:39.
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Proposition 57 (So-called Faulhaber’s formulas) Special case of the third for-
mulation of G theorem.

S⃗(0, 1, n) = (T ◦ B̂)N−1nV⃗ (n)

m-th component:

Sm−1(0, 1, n) =

n−1∑
k=0

(1 + k)m−1 =

n∑
k=1

km−1 =

m∑
k=1

1

k

(
m− 1

k − 1

)
Bm−kn

k

It applies: D:1,3,8,9,10,12,13,14; P: 54.

Example 33 m=4 S⃗(0, 1, n) = (T ◦ B⃗)N−1nV⃗ (n) =
(
0
0

)
B0 0 0 0(

1
0

)
B1

(
1
1

)
B0 0 0(

2
0

)
B2

(
2
1

)
B1

(
2
2

)
B0 0(

3
0

)
B3

(
3
1

)
B2

(
3
2

)
B1

(
3
3

)
B0




1
1

0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4



n
n2

n3

n4

 =

=


1
1

(
0
0

)
B0 0 0 0

1
1

(
1
0

)
B1

1
2

(
1
1

)
B0 0 0

1
1

(
2
0

)
B2

1
2

(
2
1

)
B1

1
3

(
2
2

)
B0 0

1
1

(
3
0

)
B3

1
2

(
3
1

)
B2

1
3

(
3
2

)
B1

1
4

(
3
3

)
B0



n
n2

n3

n4

 =

=


1
1

(
0
0

)
B0n

1
1

(
1
0

)
B1n+ 1

2

(
1
1

)
B0n

2

1
1

(
2
0

)
B2n+ 1

2

(
2
1

)
B1n

2 + 1
3

(
2
2

)
B0n

3

1
1

(
3
0

)
B3n+ 1

2

(
3
1

)
B2n

2 + 1
3

(
3
2

)
B1n

3 + 1
4

(
3
3

)
B0n

4

 =

=


S0(0, 1, n)
S1(0, 1, n)
S2(0, 1, n)
S3(0, 1, n)

 =


∑1

k=1
1
k

(
0

k−1

)
B1−kn

k∑2
k=1

1
k

(
1

k−1

)
B2−kn

k∑3
k=1

1
k

(
2

k−1

)
B3−kn

k∑4
k=1

1
k

(
3

k−1

)
B4−kn

k

 =


n

− 1
2
n+ 1

2
n2

1
6
n− 1

2
n2 + 1

3
n3

1
4
n2 − 1

2
n3 + 1

4
n4


It applies: D:6,9; P:56.

9 Various properties of Bernoulli polynomials

9.1 Sums of powers with bases in arithmetic progression
Proposition 58 (Translative form)

n−1∑
k=0

(h+ dk)m−1 =
dm−1

m

(
Bm(

h

d
+ n)−Bm(

h

d
)

)
It applies: D:9; P:17,53.

Finally, it is possible to intervene on the generalized Faulhaber formula (P:53) by
applying the translation property (P:17) to obtain a simpler form, but which does not
explicitly provide the coefficients of the polynomials in the canonical form .

m∑
k=1

(
m

k

)
Bm−k(

h

d
)nk = −Bm(

h

d
) +

m∑
k=0

(
m

k

)
Bm−k(

h

d
)nk = Bm(

h

d
+ n)−Bm(

h

d
)

q.e.d.
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9.2 Symmetric property
Proposition 59 (Symmetries in Bernoulli polynomials) Relationship between B⃗( 1

2
+

y) and B⃗( 1
2
− y). We will prove that

B⃗(x) = JB⃗(1− x)

and then also:
Bj(x) = (−1)jBj(1− x)

It applies: D:2,9,11; P:31,42.

For P:41 there are semi-oppositions G(x, 1) and G(1 − x, 1) and it results G(x, 1) =
JG(1−x, 1)J Multiplying the two members on the right by the vector V⃗ (0) to extract
the first column we have G(x, 1)V⃗ (0) = JG(1 − x, 1)JV⃗ (0). Since JV⃗ (0) = V⃗ (0) we
have:

G(x, 1)V⃗ (0) = JG(1− x, 1)V⃗ (0)

For P:31 the first column corresponds to the Bernoulli polynomials for which the vector
form of the thesis is proved. Moving on to the components Br−1(x) = (−1)r+1Br−1(1−
x) Having established that r + 1 and r − 1 are both even or both odd, therefore
(−1)r+1 = (−1)r−1 and set j = r − 1 you get the thesis. q.e.d.

9.3 Derivatives of the vector S(h,d,x)
Proposition 60 (Derivatives of the vector S(h,d,x) with respect to x)

∂S⃗(h, d, x)

∂x
= B⃗(h+ xd)

Special cases:
Per d = 1 : ∂S⃗(h,1,x)

∂x
= B⃗(x+ h)

Per h = 0 e d = 1 : ∂S⃗(0,1,x)
∂x

= B⃗(x)
It applies: D:1,2,9,12,13,14,15; E:6; P:20,29.

Per P:29
G(h, d) = Ṽ (d)(T ◦ B̂(

h

d
))N−1

therefore for D:7
S⃗(h, d, x) = Ṽ (d)(T ◦ B̂(

h

d
))N−1xV⃗ (x)

So by differentiating we have:

∂S⃗(h, d, x)

∂x
=

∂Ṽ (d)(T ◦ B̂(h
d
))N−1xV⃗ (x)

∂x
= Ṽ (d)(T ◦ B̂(

h

d
))N−1 ∂(xV⃗ (x))

∂x
=

As also shown in the example E:6, the derivative of (x, x2, x3, ...) is (1, 2x, 3x2, 3x3...)
i.e. NV⃗ (x) then also applying P:20

= Ṽ (d)(T ◦ B̂(
h

d
))N−1NV⃗ (x) = Ṽ (d)B⃗(

h

d
+ x) = B⃗(h+ xd)

Having considered N−1N = U and having finally multiplied the diagonal matrix by
the vector B. q.e.d.

Proposition 61 (Deriving the vector S with respect to h)

Br−1(x) =
B′

r(x)

r

It applies: D:1,9,12,13,14,15; P:29,39,54.
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For P:29
G(h, 1) = (T ◦ B̂(h))N−1

therefore for P:39 and for D:7

S⃗(h, 1, x) =

n−1∑
k=0

V⃗ (h+ k) = (T ◦ B̂(h))N−1xV⃗ (x) =

Considering the m-th component as in P:54 but with d = 1 we have Sm−1(h, 1, n) =

n−1∑
k=0

(h+ k)m−1 =

m∑
k=1

1

k

(
m− 1

k − 1

)
Bm−k(h)n

k

deriving the two members of the identity with respect to h:

(m− 1)

n−1∑
k=0

(h+ k)m−2 =

m∑
k=1

1

k

(
m− 1

k − 1

)
B′

m−k(h)n
k

Taking into account the fact that for k = m the coefficient of the higher degree
monomial is B′

0(h) = 0 given that B0(h) = 1 we have:

(m− 1)

n−1∑
k=0

(h+ k)m−2 =

m−1∑
k=1

1

k

(
m− 1

k − 1

)
B′

m−k(h)n
k

Assuming m > 1, multiply the two sides by the reciprocal of m − 1 and taking into
account that it results 1

(m−1)k

(
m−1
k−1

)
= 1

(m−1)k
(m−1)!

(k−1)!(m−k)!
= 1

k
(m−2)!

(k−1)!(m−k−1)!
1

m−k
=

1
k

(
m−2
k−1

)
1

m−k
we have:

n−1∑
k=0

(h+ k)m−2 =

m−1∑
k=1

1

k

(
m− 2

k − 1

)
B′

m−k

m− k
(h)nk

on the other hand for P:39 and for D:7 it must also be:

n−1∑
k=0

(h+ k)m−2 =

m−1∑
k=1

1

k

(
m− 2

k − 1

)
Bm−k−1(h)n

k

therefore the coefficients of the two polynomials must coincide and, setting r = m− k

it must therefore be Br−1 =
B′

r
r

with r = 1...m− 1 q.e.d.

9.4 Generator function theorem
Proposition 62 (Generator function)

xehx

ex − 1
=

∞∑
k=0

Bk(h)
xk

k!

Special cases h=0 e h=1:

x

ex − 1
=

∞∑
k=0

Bk
xk

k!

xex

ex − 1
=

∞∑
k=0

B+
k

xk

k!

It applies: D:9; P:15.
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Expansion in infinite series:

ehx =

∞∑
k=0

hkxk

k!
= 1 + hx+ h2 x

2

2!
+ h3 x

3

3!
+ h4 x

4

4!
+ ...

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ ...

substituting we have:

x(1 + hx+ h2 x2

2!
+ h3 x3

3!
+ h4 x4

4!
+ ...)

x+ x2

2!
+ x3

3!
+ x4

4!
+ ...

=

∞∑
k=0

Bk(h)
xk

k!

collecting and simplifying

1 + h
p
x+ h2

p2
x2

2!
+ h3

p3
x3

3!
+ h4

p4
x4

4!
+ ...

1 + x
2!

+ x2

3!
+ x3

4!
+ ...

=

∞∑
k=0

Bk(h)
xk

k!

Multiplying the two sides of this equation by the denominator of the first expression
we obtain the first side

1 +
h

p
x+

h2

p2
x2

2!
+

h3

p3
x3

3!
+

h4

p4
x4

4!
+ ...

and to the second member:

(1 +
x

2!
+

x2

3!
+

x3

4!
+ ...)

∞∑
k=0

Bk(h)
xk

k!

that gives:

B0(h)

1!0!
x0 +

B1(h)

1!1!
x1 +

B2(h)

1!2!
x2 +

B3(h)

1!3!
x3 +

B4(h)

1!4!
x4 + ...

B0(h)

2!0!
x1 +

B1(h)

2!1!
x2 +

B2(h)

2!2!
x3 +

B3(h)

2!3!
x4 +

B4(h)

2!4!
x5 + ...

B0(h)

3!0!
x2 +

B1(h)

3!1!
x3 +

B2(h)

3!2!
x4 +

B3(h)

3!3!
x5 +

B4(h)

3!4!
x6 + ...

B0(h)

4!0!
x3 +

B1(h)

4!1!
x4 +

B2(h)

4!2!
x5 +

B3(h)

4!3!
x6 +

B4(h)

4!4!
x7 + ...

B0(h)

5!0!
x4 +

B1(h)

5!1!
x5 +

B2(h)

5!2!
x6 +

B3(h)

5!3!
x7 +

B4(h)

5!4!
x8 + ...

Arranging the monomials in increasing order of degree along the diagonals we obtain
the infinite polynomial:

B0(h) +
1

(1 + 1)!

1∑
j=0

Bj(h)

(
1 + 1

j

)
x1 +

1

(2 + 1)!

2∑
j=0

Bj(h)

(
2 + 1

j

)
x2+

+
1

(3 + 1)!

3∑
j=0

Bj(h)

(
3 + 1

j

)
x3 +

1

(4 + 1)!

4∑
j=0

Bj(h)

(
4 + 1

j

)
x4 + ... =

=

∞∑
k=0

1

(k + 1)!

k∑
j=0

Bj(h)

(
k + 1

j

)
xk =

∞∑
k=0

1

(k + 1)

k∑
j=0

Bj(h)

(
k + 1

j

)
xk

k!

Comparing this second member with the first previously mentioned we have:

∞∑
k=0

1

(k + 1)

k∑
j=0

Bj

(
h

)(
k + 1

j

)
xk

k!
=

∞∑
k=0

hk x
k

k!
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from which the identity of the coefficients of xk

k!
:

=
1

(k + 1)

k∑
j=0

Bj(h)

(
k + 1

j

)
= hk

multiplying the two sides by m = k + 1 and changing the order of the factors:

m−1∑
j=0

(
m

j

)
Bj(h) = mhm−1

Finally expressing the same sum through the index j shifted by one unit

m∑
j=1

(
m

j − 1

)
Bj−1(h) = mhm−1

we can easily recognize the definition given for Bernoulli polynomials (P:15). q.e.d.

10 A little of history
Faulhaber’s formula solves the problem of the sum of powers of successive integers
[4] in a direct and general way. A classic problem that has captured the interest of
mathematicians for millennia. Pascal, for example, in 1634 had identified an identity
for the recursive resolution of the problem (P:35). In P:55 we proved Faulhaber’s
formula also in the form that today seems to be more commonly adopted.

However, the choice of expressing it through the (first) Bernoulli numbers appears
artificial due to that negative factor raised to the power which multiplies many times
uselessly for the sole purpose of changing the sign of B1. More natural, as shown,
to choose the second Bernoulli numbers, the almost identical variant but with the
opposite B1 (P:47).

Indeed, the numbers considered by Bernoulli were neither the first nor the second
sequence as they began, and continued to start for over a century, from B2 imme-
diately after the controversial B1. This numerical sequence was published by the
Bernoulli family in Ars Conjectandi [2] in 1713 eight years after the death of Jacob,
author of the work. In the chapter Summae potestatum also appeared the formula for
constructing the polynomials calculating the sums of powers of successive integers as
a function of that particular unpublished and mysterious numerical sequence. Here,
albeit with modern symbols, is that formula that is only apparently different from the
most common. (P:55):

n∑
k=1

km =
1

m+ 1
nm+1 +

1

2
nm +

n∑
k=2

mk−1

k!
Bkn

m−k+1

The underlined exponent indicates the number of factors in the decreasing factorial.
A few years later De Moivre and Euler began calling these numbers by their current
name. Whereas the formula was named after Faulhaber, who in his life had shown
an extraordinary interest and exceptional virtuosity in solving particular cases of this
problem up to the seventeenth degree of the exponents. Even Bernoulli had given
Faulhaber part of the credit for the formula found but not yet proven. After over a
century it was Carl Jacobi (1804-1851) [3] who succeeded. The proof was based on
developments in mathematical analysis which had revealed that:

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
(1)
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imilarly, the Bernoulli numbers were also defined analytically. In 1842, in an age
prior to that of computers, Ada Lovelace devised a program, the first in history,
which was supposed to calculate the Bernoulli numbers with the future analytical
engine designed by Charles Baggage. For this purpose you essentially used the same
recursive algorithm seen in P: 17 [10] This, however, was explained by resorting to the
generating function (note G [5]). The so-called Bernoulli polynomials were taken into
consideration by Leonardo Euler (1707-1783) even if the first to call them by this name
was J.L. Raabe in 1851 [16] Also these polynomials are traditionally defined through
the related generating function.

In 1982 A.W.F. Edwards published an article [6] in which, starting from an identity
used by Pascal in 1654 [7] to recursively solve the problem of the sum of the powers
of successive integers, he shows that the coefficients of the polynomials solving the
problem can be found by inverting a matrix easily obtainable from Pascal’s triangle
Around 1990 the author accidentally discovered the same relationship while preparing
a matrix exercise for his [8] high school students. About fifteen years later, retired and
still unable to find the topic in any publication, he tried to prove what he discovered.
He succeeded and published demonstrations and history of the discovery on the web [8].
In 2017, after about a decade without significant developments, the author renewed
his interest in the problem by deciding to take an alternative path to the analytic
one historically traced by Carl Jacobi. So he began to prove formulas for powers
of successive integers and properties of Bernoulli numbers using matrices instead of
the usual mathematical analysis. The same year he became aware of the works of
Edwards [7] and published some results of the path undertaken on the web in English
[9] capturing the interest of researchers [15]. The author organizes the numerous
results of his research in the form of a treatise which he will rewrite several times for
new discoveries and for the continuous search for more suitable symbols and better
organization. In 2021 a small part of the work done is published in Archimede [13]
and the following year in MatematicaMente. [14].
Some fruits of the research undertaken are proposed in this article.

11 Bibliografy

References
[1] Frank J. Swetz and Victor J. Katz Johann ,Mathematical treasures: Faulhaber’s

Accademiae Algebrae, MMA

[2] Jacob Bernoulli, Summae potestatum in Artis conjectandi, Internet Archive p.97,
1713

[3] Carl Jacobi, De usu legitimo formulae summatoriae Maclaurinianae. Journal für
die reine und angewandte Mathematik. 12. pp. 263–72.,1834

[4] Sum of power of positive integer MMA, Mathematical association of America
MMA

[5] Ada Lovelace Note G, in Luigi Manabrea, “Sketch the analitycal engine invented
by Charles Babbage”,Ginevra, 1842

[6] A.W.F. Edwards,Sums of powers of integers Mathematical Gazette 66, 1982

[7] A.W.F Edwards Pascal’s arhitmetical triangle.The story of a mathematical idea,
pp.82-84, The Johns University, 1987

[8] Giorgio Pietrocola, Esplorando un antico sentiero: teoremi sulle somme di potenze
di interi successivi,Maecla,1°parte 2008 2°parte 2019

40

https://www.maa.org/press/periodicals/convergence/mathematical-treasures-johann-faulhabers-academia-algebrae
https://www.maa.org/press/periodicals/convergence/mathematical-treasures-johann-faulhabers-academia-algebrae
https://www.maa.org/
https://archive.org/stream/bub_gb_kz9nvk99EWoC#page/n139/mode/2up
https://www.maa.org/press/periodicals/convergence/sums-of-powers-of-positive-integers
https://www.maa.org/
https://www.fourmilab.ch/babbage/sketch.html#NoteG
http://www.maecla.it/Matematica/sommapotenze/racconto.htm
http://www.maecla.it/2019/151019sommapotenze/racconto2019.htm


[9] Giorgio Pietrocola, On polynomials for the calculation of sums of powers of suc-
cessive integers and Bernoulli numbers deduced from Pascal’s arithmetical trian-
gle.www.pietrocola.eu, 2017

[10] Giorgio Pietrocola, Internet e l’algoritmo di Ada Byron, contessa di Lovelace e
incantatrice di numeri, Maecla, 2017

[11] Giorgio Pietrocola, Dialogo con la formula che anticipò di un secolo l’era infor-
matica,www.pietrocola, 2017

[12] Giorgio Pietrocola, Didattica delle matrici applicata al classico problema della
somma di potenze di interi successivi, 6° simposio APAV MatNat "fascino e
bellezza della matematica",2019

[13] Giorgio Pietrocola, Matrici binomiali per il calcolo di somme potenze, Archimede
4,2021

[14] Giorgio Pietrocola, Matrici binomiali per polinomi calcolanti somme di potenze
con basi in progressione aritmetica, MatematicaMente n.298 e n.299

[15] Nigel Derby, The continued search of sums of powers, The Mathematical Gazette,
2019

[16] Encyclopedia of Mathematics , Bernoulli polynomials, 2022

41

http://www.pietrocola.eu/EN/Theoremsonthesumofpowersofsuccessiveintegersbygiorgiopietrocola%20.pdf
http://www.pietrocola.eu/EN/Theoremsonthesumofpowersofsuccessiveintegersbygiorgiopietrocola%20.pdf
http://www.pietrocola.eu/EN/Theoremsonthesumofpowersofsuccessiveintegersbygiorgiopietrocola%20.pdf
http://www.maecla.it/Matematica/Internet_e_l_algoritmo_di_Ada_Byron.pdf
http://www.maecla.it/Matematica/Internet_e_l_algoritmo_di_Ada_Byron.pdf
http://www.pietrocola.eu/ricerchebernoulli/Divulgativo%20(4).pdf
http://www.pietrocola.eu/ricerchebernoulli/Divulgativo%20(4).pdf
https://www.cambridge.org/core/journals/mathematical-gazette/article/continued-search-for-sums-of-powers/75BB1F5FCAF379692CCB80A66C256854
https://encyclopediaofmath.org/wiki/Bernoulli_polynomials

	Introduction
	Warnings

	Definitions
	Three diagonal matrices: N, J, U
	Three costant Pascal matrices: T, A e Z
	Two variable binomial matrices: T(h,d), G(h,d)
	Three variable vectors: V(x), B(x), S(h,d,x)
	Three operators: semi-opposite, tilde and hat
	T-composed matrices
	links to three other definitions
	Collection of examples on the given definitions

	From the umbral theorem to the translation of Bernoulli polynomials
	Umbral theorem and commutativity of T-matrices
	Additivity and definition of powers of T
	Two Special cases of T(h,d)
	Addittivity and definition of powers of Z
	Abelian groups and no
	Properties of T(h,d)
	Inversion and translations in Bernoulli Polynomials

	Properties of matrices in semi-opposite relationship
	Properties
	Relationship between the power of T and its inverse

	Notable product
	Relations between matrices A,T and Z
	New expressions for G(h,d)
	First column of G(h,1)

	Sums of powers with arithmetic progression bases
	G0 for successive integers starting from 0
	G0 identity
	G0 theorem
	G0* theorem Similar to G0 but in factored form.

	Pascal's identity
	G1 per interi successivi inizianti da 1
	G1 identity
	future G1 theorem
	G1* theorem for factored polynomials

	Generalization to any arithmetic progression
	Theorem G: for any arithmetic progression
	G1 theorem

	Semi-opposite pairs of matrices G

	Bernoulli numbers
	Second Bernoulli numbers
	Zero Bernoulli numbers
	Bernoulli numbers from Pascal's triangle
	H, a binomial Hessemberg matrix and its variants

	So-called Faulhaber's formula 
	Various properties of Bernoulli polynomials
	Sums of powers with bases in arithmetic progression 
	Symmetric property
	Derivatives of the vector S(h,d,x)
	Generator function theorem

	A little of history
	Bibliografy

